RATIONAL ALGEBRAIC K-THEORY
OF TOPOLOGICAL K-THEORY

CHRISTIAN AUSONI AND JOHN Rognes

August 14th 2007

Abstract. We show that after rationalization there is a homotopy fiber sequence $BBU_{\otimes} \to K(ku) \to K(\mathbb{Z})$. We interpret this as a correspondence between the virtual 2-vector bundles over a space X and their associated anomaly bundles over the free loop space $\mathcal{L}X$. We also rationally compute $K(KU)$ by using the localization sequence, and $K(MU)$ by a method that applies to all connective \mathbb{S}-algebras.

Introduction

We are interested in the algebraic K-theory $K(ku)$ of the connective complex K-theory spectrum ku. By the calculations of [AR02, Thm. 0.4] and [Au], the “mod p and v_1” homotopy of $K(ku)$ is purely v_2-periodic, a distinctive homotopy theoretic property it shares with the spectra representing elliptic cohomology [LRS95] and topological modular forms [Ho02, §4]. The theory of 2-vector bundles from [BDR04] and [BDRR] therefore exhibits $K(ku)$ as a geometrically defined form of elliptic cohomology. In Section 5 we outline how a 2-vector bundle with connecting data, similar to a connection in a vector bundle, is thought to specify a $1+1$-dimensional conformal field theory. Since these 2-vector bundles are also effective cycles for the form of elliptic cohomology theory represented by $K(ku)$, we have some justification for referring to them as elliptic objects, as proposed by Segal [Se89].

As illustrated by the authors’ calculations referred to above, the arithmetic and homotopy-theoretic information captured by algebraic K-theory becomes more accessible after the introduction of suitable finite coefficients. However, for the extraction of \mathbb{C}-valued numerical invariants from a conformal field theory, only the rational homotopy type of $K(ku)$ will matter. We are grateful to Ib Madsen and Dennis Sullivan for insisting that for such geometric applications, we should first want to compute $K(ku)$ rationally. To this end we can offer the following theorem. There is a unit inclusion map

$$w : BBU_{\otimes} \to BGL_1(ku) \to BGL_\infty(ku)^+ \to K(ku).$$

Let $\pi : K(ku) \to K(\mathbb{Z})$ be induced by the zero-th Postnikov section $ku \to H\mathbb{Z}$. The composite $\pi \circ w$ is the constant map to the base-point of the 1-component of $K(\mathbb{Z})$.

Theorem 0.1. (a) After rationalization,

$$BBU_{\otimes} \xrightarrow{w} K(ku) \xrightarrow{\pi} K(\mathbb{Z})$$

is a split homotopy fiber sequence.

(b) The Poincaré series of $K(ku)$ is

$$1 + \frac{t^3}{1-t^2} + \frac{t^5}{1-t^4} = 1 + \frac{t^3 + 2t^5}{1-t^4}.$$

(c) There is a rational determinant map

$$\det_{\mathbb{Q}} : BGL_{\infty}(ku)^{\times} \to BGL_{1}(ku)_{\mathbb{Q}}$$

that, in its relative form for $ku \to H\mathbb{Z}$, rationally splits w.

By the Poincaré series of a space X of finite type, we mean the formal power series $\sum_{n \geq 0} r_n t^n$ in $\mathbb{Z}[[t]]$, where r_n is the rank of $\pi_n(X)$. Theorem 0.1 is proved by assembling Theorem 2.5(a) and Theorem 4.8(a). The other parts of those theorems prove similar results for $K(ko)$ and $K(\ell)$, where $\ell = BP\langle 1 \rangle$.

The splitting of $K(ku)_{\mathbb{Q}}$ shows that for a (virtual) 2-vector bundle over X, represented by a map $\mathcal{E} : X \to K(ku)$, the rational information splits into two pieces. The less interesting piece is the decategorified information carried by the dimension bundle $\dim(\mathcal{E}) = \pi \circ \mathcal{E} : X \to K(\mathbb{Z})$. The more interesting piece is the determinant bundle

$$|\mathcal{E}| = \det_{\mathbb{Q}} \circ \mathcal{E} : X \to (BBU_{\otimes})_{\mathbb{Q}}.$$

To specify $|\mathcal{E}|$ is equivalent to specifying a rational virtual vector bundle $\mathcal{H} : LX \to (BU_{\otimes})_{Q}$ over the free loop space $LX = \text{Map}(S^1, X)$, called the “anomaly bundle”, subject to a coherence condition relating the composition of free loops, when defined, to the tensor product of virtual vector spaces. See diagram (5.3).

The conclusion is that for rational purposes the information in a 2-vector bundle \mathcal{E} over X is the same as that in its anomaly bundle \mathcal{H} over LX (subject to the indicated coherence condition, which we think of as implicit, and together with the dimension bundle $\dim(\mathcal{E})$ over X, which we tend to ignore). In physical language, the fiber of the anomaly bundle at a free loop $\gamma : S^1 \to X$ plays the role of the state space of γ viewed as a closed string in X. The advantage of 2-vector bundles over their homotopy-theoretic alternatives, such as representing maps to classifying spaces or bundles of ku-modules, is that they are geometrically modeled in terms of vector bundles, rather than virtual vector bundles. This seems to become an essential virtue when one wants to treat differential-geometric structures like connections on these bundles.

We also compute the rational algebraic K-theory $K(KU)$ of the periodic complex K-theory spectrum KU. To this end we evaluate the (rationalized) transfer map π_* in the localization sequence

$$K(\mathbb{Z}) \xrightarrow{\pi_*} K(ku) \xrightarrow{L} K(KU)$$

predicted by the second author and established by Blumbergs and Mandell [PM].
Theorem 0.2. (a) There is a rationally split homotopy fiber sequence of infinite loop spaces

$$K(ku) \xrightarrow{\rho} K(KU) \xrightarrow{\partial} BK(\mathbb{Z})$$

where ρ is induced by the connective cover map $ku \to KU$, and $BK(\mathbb{Z})$ denotes the first connected delooping of $K(\mathbb{Z})$.

(b) The Poincaré series of $K(KU)$ is

$$f(t) = (1 + t) + \frac{t^3 + 2t^5 + t^6}{1 - t^4}.$$

See Theorem 2.12 for our proof.

As stated, Theorems 0.1 and 0.2 only concern the algebraic K-theory of topological K-theory, but we develop our proofs in the greater generality of arbitrary connective S-algebras. In Section 1 we observe how the calculation by Goodwillie [Go86] of the relative rational algebraic K-theory for a 1-connected map $R \to \pi_0 R$ of simplicial rings (which generalizes earlier calculations by Hsiang and Staffeldt [HS82] for simplicial group rings), also applies to determine the relative rational algebraic K-theory for a 1-connected map $A \to H\pi_0 A$ of connective S-algebras. The answer is given in terms of negative cyclic homology; see Theorem 1.5 and Corollary 1.6.

When $\pi_0 A$ is close to \mathbb{Z}, and $A \to H\pi_0 A$ is a “rational deRham equivalence”, we get a very simple expression for the relative rational algebraic K-theory as the image of Connes’ B-operator on Hochschild homology; see Proposition 1.8 and Corollary 1.9. These hypotheses apply to a number of interesting examples of connective S-algebras, including the K-theory spectra ku, ko and ℓ, and the bordism spectra MU, MSO and MSp. We work these examples out in Theorem 2.5 and Theorem 3.4, respectively.

In Section 4 we consider the unit inclusion map $w: BGL_1(A) \to K(A)$. For commutative A, the rationalization $A_{\mathbb{Q}}$ is equivalent as a commutative HQ-algebra to the Eilenberg–MacLane spectrum HR of a commutative simplicial \mathbb{Q}-algebra, so we can use the determinant $GL_n(R) \to GL_1(R)$ to define a rational determinant map

$$\det_{\mathbb{Q}}: BGL_\infty(A)^+ \to BGL_1(A)_{\mathbb{Q}}.$$

We show in Proposition 4.7 that the composite $\det_{\mathbb{Q}} \circ w$ is the rationalization map, and apply this in Theorem 4.8 to show that w induces a rational equivalence from $BBU_{\mathbb{Q}}$ to the homotopy fiber of $\pi: K(ku) \to K(\mathbb{Z})$, and similarly for ko and ℓ. This last step is a counting argument; it does not apply for MU or the other bordism spectra.

Acknowledgments. In an earlier version of this paper, we emphasized a trace map to $THH(ku)$ over the determinant map to $(BBU_{\mathbb{Q}})_\mathbb{Q}$, in order to detect the image of w in $K(ku)$. We are grateful to Bjørn Dundas for reminding us of the existence of determinants for commutative simplicial rings, which is half of the basis for the existence of the map $\det_{\mathbb{Q}}$ defined in Lemma 4.6. We are also grateful to Mike Mandell and Brooke Shipley for help with some of the references concerning commutative simplicial \mathbb{Q}-algebras given in Subsection 1.1.
§1. Rational algebraic K-theory of connective S-algebras

1.1. S-algebras. We work in one of the modern symmetric monoidal categories of spectra [EKMM97, [Ly99], [HSS00], [MMSS01], which we shall refer to as S-modules. The monoids (resp. commutative monoids) in this category are called S-algebras (resp. commutative S-algebras), and are equivalent to the A_{∞} ring spectra (resp. E_{∞} ring spectra) considered since the 1970’s. The Eilenberg–Mac Lane functor $H: R \mapsto HR$ maps the category of simplicial rings (resp. commutative simplicial rings) to the category of S-algebras (resp. commutative S-algebras).

Schwede proved in [Schw99, 4.5] that H is part of a Quillen equivalence from the category of simplicial rings to the category of connective HZ-algebras. There is a similar equivalence between the category of commutative simplicial Q-algebras and the category of connective commutative HQ-algebras.

One form of the latter equivalence appears in [KM95, II.1.3]. In a little more detail, the category of connective commutative HQ-algebras is “connective Quillen equivalent” [MMSS01, p. 445] to the category of connective E_{∞} HQ-ring spectra [EKMM97, II.4], and connective E_{∞} HQ-ring spectra are the E_{∞} objects in connective HQ-modules, which are Quillen equivalent to E_{∞} simplicial Q-algebras [Schw99, 4.4]. The monads defining E_{∞} algebras and commutative algebras in simplicial Q-modules are weakly equivalent, since for every $j \geq 0$ the group homology of Σ_j with coefficients in any Q-module is concentrated in degree zero. Hence E_{∞} simplicial Q-algebras are Quillen equivalent to connective simplicial Q-algebras [Ma03, 6.7].

The homotopy categories of commutative simplicial rings and connective commutative HZ-algebras are not equivalent.

1.2. Linearization. Let A be a connective S-algebra. We write $\pi = \pi_A: A \to H\pi_0 A$ for its zero-th Postnikov section, and define the linearization map $\lambda = \lambda_A: A \to HZ \wedge A$ to be $\pi \wedge id: A \cong S \wedge A \to HZ \wedge A$. It is a π_0-isomorphism and a rational equivalence of connective S-algebras. For each (simplicial or topological) monoid G let $S[G] = \Sigma^\infty G_+$ be its unreduced suspension spectrum. For $A = S[G]$, the linearization map $\lambda: S[G] \to HZ \wedge S[G] \cong HZ[G]$ agrees with the map considered by Waldhausen [Wa78, p. 43].

In general, $HZ \wedge A$ is a connective HZ-algebra, so by the first Quillen equivalence above there is a naturally associated simplicial ring R with $HZ \wedge A \simeq HR$. For connective commutative A, the rationalization $A_\mathbb{Q} = HQ \wedge A$ is a connective commutative HQ-algebra, so by the second Quillen equivalence above there is a naturally associated commutative simplicial Q-algebra R with $A_\mathbb{Q} \simeq HR$.

1.3. Algebraic K-theory. For a general S-algebra A, the algebraic K-theory space $K(A)$ can be defined as $\Omega|hS_0C_A|$, where C_A is the category of finite cell A-module spectra, and their retract, S_0 denotes Waldhausen’s S_0-construction [Wa85, §1.3], and $|h(-)|$ indicates the nerve of the subcategory of weak equivalences. By iterating the S_0-construction, we may also view $K(A)$ as a spectrum. For connective S-algebras, $K(A)$ can alternatively be defined in terms of Quillen’s plus-construction as $K_0(\pi_0 A) \times BGL_\infty(A)^+$, and then the two definitions are equivalent, see [EKMM97, VI.7.1]. We write $K(R)$ for $K(HR)$, and similarly for other functors.

Any map $A \to A'$ of connective S-algebras that is a π_0-isomorphism and a rational equivalence induces a rational equivalence $K(A) \to K(A')$, by [Wa78, 2.2]. The proof goes by showing that $BGL_\infty(A) \to BGL_\infty(A')$ is a rational equivalence.
for each n. In particular, for R with $HZ \wedge A \simeq HR$ there is a natural rational equivalence $\lambda: K(A) \to K(HZ \wedge A) \simeq K(R)$. For $X \simeq BG$, Waldhausen writes $A(X)$ for $K(S[G])$, and $\lambda: A(X) \to K(Z[G])$ is a rational equivalence. In this case, $A(X)$ can also be defined as the algebraic K-theory of a category $R_f(X)$ of suitably finite retractive spaces over X, see [Wa85, §2.1].

1.4. Cyclic homology. There is a natural trace map $tr: K(A) \to THH(A)$ to the topological Hochschild homology of A, see [BHM93, §3]. The target is a cyclic object in the sense of Connes, hence carries a natural S^1-action. There exists a model for the trace map that factors through the fixed points of this circle action [Du04], hence it also factors through the homotopy fixed points $THH(A)^{hS^1}$. We get a natural commutative triangle

$$
\begin{array}{c}
K(A) \xrightarrow{\alpha} THH(A)^{hS^1} \\
\downarrow tr \downarrow F \\
THH(A)
\end{array}
$$

where the Frobenius map F forgets about S^1-homotopy invariance. For any simplicial ring R there are natural isomorphisms $THH_*(HR_\mathbb{Q}) \cong HH_*(R \otimes \mathbb{Q})$ (Hochschild homology) and $THH_*(HR_\mathbb{Q})^{hS^1} \cong HC_*^-(R \otimes \mathbb{Q})$ (negative cyclic homology). See e.g. [EKMM97, IX.1.7] and [CJ90, 1.3(3)]. With these identifications, the triangle above realizes the commutative diagram of [Go86, II.3.1]. In [Go86, II.3.4], Goodwillie proved:

Theorem 1.5. Let $f: R \to R'$ be a map of simplicial rings, with $\pi_0 R \to \pi_0 R'$ a surjection with nilpotent kernel. Then

$$
\begin{array}{c}
K(R)_\mathbb{Q} \xrightarrow{\alpha} HC^-(R \otimes \mathbb{Q}) \\
\downarrow f \\
K(R')_\mathbb{Q} \xrightarrow{\alpha} HC^-(R' \otimes \mathbb{Q})
\end{array}
$$

is homotopy Cartesian, i.e., the map of vertical homotopy fibers

$$
\alpha: K(f)_\mathbb{Q} \to HC^-(f \otimes \mathbb{Q})
$$

is an equivalence.

Here we write $K(f)$ for the homotopy fiber of $K(R) \to K(R')$, so that there is a long exact sequence

$$
\cdots \to K_{*-1}(R') \to K_*(f) \to K_*(R) \to K_*(R') \to \cdots,
$$

and similarly for other functors from (S)-algebras to spaces. (Goodwillie writes $K(f)$ for a delooping of our $K(f)$, but we need to emphasize fibers over cofibers.) We write $K(R)_\mathbb{Q}$ for the rationalization of $K(R)$, and similarly for other spaces and S-algebras.
Corollary 1.6. Let \(g: A \to A' \) be a map of connective \(S \)-algebras, with \(\pi_0 A \to \pi_0 A' \) a surjection with nilpotent kernel, then

\[
\begin{array}{ccc}
K(A)_Q & \xrightarrow{\alpha} & THH(A)_Q^{hS^1} \\
g \downarrow & & \downarrow g \\
K(A')_Q & \xrightarrow{\alpha} & THH(A')_Q^{hS^1}
\end{array}
\]

is homotopy Cartesian, i.e., the map of vertical homotopy fibers

\[\alpha: K(g)_Q \to THH(g)_Q^{hS^1} \]

is an equivalence.

Proof. Given \(g: A \to A' \) we find \(f: R \to R' \) with \(HZ \wedge A \simeq HR \) and \(HZ \wedge A' \simeq HR' \) making the diagram

\[
\begin{array}{ccc}
A & \xrightarrow{\lambda} & HR \\
g \downarrow & & \downarrow hf \\
A' & \xrightarrow{\lambda} & HR'
\end{array}
\]

homotopy commute. Then \(\lambda: K(A) \to K(R) \) is a rational equivalence and \(A_Q \simeq H(R \otimes \mathbb{Q}) \), so the square in the corollary is equivalent to the square in Goodwillie’s theorem. \(\Box \)

1.7. De Rham homology. The (spectrum level) circle action on \(THH(A) \) induces a suspension operator \(d: THH_* (A) \to THH_{*+1} (A) \), analogous to Connes’ operator \(B: HH_* (R) \to HH_{*+1} (R) \). When \(A_Q \simeq H(R \otimes \mathbb{Q}) \), these operators are compatible under the isomorphism \(THH_* (A_Q) \cong HH_* (R \otimes \mathbb{Q}) \). In general \(dd = d\eta \) is not zero [He97, 1.4.4], where \(\eta \) is the stable Hopf map, but in the algebraic case \(BB = 0 \), so one can define the de Rham homology

\[H_*^{dR} (R) = \ker(B) / \text{im}(B) \]

of a simplicial ring \(R \) as the homology of \(HH_* (R) \) with respect to the \(B \)-operator.

For a map \(g: A \to A' \) of \(S \)-algebras, the homotopy fiber \(THH(g) \) of \(THH(A) \to THH(A') \) inherits a circle action and associated suspension operator. Similarly, for a map \(f: R \to R' \) of simplicial rings there is a relative \(B \)-operator acting on the term \(HH_* (f) \) in the long exact sequence

\[\cdots \rightarrow HH_{*+1} (R') \rightarrow HH_* (R) \rightarrow HH_* (f) \rightarrow HH_* (R) \rightarrow HH_{*+1} (R) \rightarrow \cdots, \]

and we define \(H_*^{dR} (f) \) to be the homology of \(HH_* (f) \) with respect to this \(B \)-operator. We say that \(f: R \to R' \) is a de Rham equivalence if \(H_*^{dR} (f) = 0 \), and that \(f \) is a rational de Rham equivalence if \(H_*^{dR} (f \otimes \mathbb{Q}) = 0 \). If we assume that \(HH_* (R) \to HH_* (R') \) is surjective in each degree, then there is a long exact sequence

\[\cdots \rightarrow H_{*+1}^{dR} (R') \rightarrow H_*^{dR} (f) \rightarrow H_*^{dR} (R) \rightarrow H_*^{dR} (R') \rightarrow \cdots, \]

in which case \(f \) is a de Rham equivalence if and only if \(H_*^{dR} (R) \to H_*^{dR} (R') \) is an isomorphism in every degree.
Proposition 1.8. If \(f: R \to R' \) is a de Rham equivalence, then there is an exact sequence
\[
0 \to HC_{\ast}^-(f) \xrightarrow{E} HH_{\ast}(f) \xrightarrow{B} HH_{\ast+1}(f)
\]
that identifies \(HC_{\ast}^-(f) \) with \(\ker(B) \subset HH_{\ast}(f) \).

Proof. By analogy with the homotopy fixed point spectral sequence for \(THH(g)^{hS^1} \), there is a second quadrant homological spectral sequence
\[
E_2^{2} = \mathbb{Q}[t] \otimes HH_{\ast}(f) \Rightarrow HC_{\ast}^-(f)
\]
with \(t \in E_{2,0}^2 \) and \(d^2(t^i \cdot x) = t^{i+1} \cdot B(x) \) for all \(x \in HH_{\ast}(f) \), \(i \geq 0 \). So \(E_3^{2} \) is the sum of \(\ker(B) \subset HH_{\ast}(f) \) in the zero-th column and a copy of \(H_{\ast}^{dR}(f) \) in each even, negative column. By assumption the latter groups are all zero, so the spectral sequence collapses to the zero-th column at the \(E_3 \)-term. The Frobenius \(F \) is the edge homomorphism for this spectral sequence, and the assertion follows. \(\square \)

Corollary 1.9. Let \(A \) be a connective \(S \)-algebra such that \(\pi_0 A \) is any localization of the integers, and let \(R \) be a simplicial \(\mathbb{Q} \)-algebra with \(A_{\mathbb{Q}} \simeq HR \).

(a) The homotopy fiber sequence
\[
K(\pi_A) \to K(A) \xrightarrow{\pi_A} K(\pi_0 A)
\]
is rationally split, where \(\pi_A : A \to H\pi_0 A \) is the zero-th Postnikov section.

(b) There are equivalences
\[
K(\pi_A)_{\mathbb{Q}} \xrightarrow{\alpha} THH(\pi_{A_{\mathbb{Q}}})^{hS^1} \simeq HC_{\ast}^-(\pi_R);
\]
where \(\pi_R : R \to \pi_0 R = \mathbb{Q} \) is the zero-th Postnikov section.

Suppose furthermore that \(H_{\ast}^{dR}(R) \cong \mathbb{Q} \) is trivial in positive degrees.

(c) The map \(\pi_R \) is a de Rham equivalence, and the Frobenius map identifies \(HC_{\ast}^-(\pi_R) \) with the positive-degree part of
\[
\ker(B) \subset HH_{\ast}(R) \cong THH_{\ast}(A) \otimes \mathbb{Q}.
\]

That part is also equal to \(\text{im}(B) \subset THH_{\ast}(A) \otimes \mathbb{Q} \).

(d) The trace map \(tr: K(A) \to THH(A) \) induces the composite identification of \(K_{\ast}(\pi_A) \otimes \mathbb{Q} \) with the positive-degree part of \(\ker(B) \subset THH_{\ast}(A) \otimes \mathbb{Q} \).

Proof. (a) Write \(\pi_0 A = \mathbb{Z}_{(P)} \) for some (possibly empty) set of primes \(P \). The unit map \(i : S \to A \) factors through \(S_{(P)} \), and the composite map \(S_{(P)} \to A \to H\pi_0 A \) is a \(\pi_0 \)-isomorphism and a rational equivalence. Hence the composite
\[
K(S_{(P)}) \to K(A) \xrightarrow{\pi_A} K(\pi_0 A)
\]
is a rational equivalence.

(b) The map \(\pi_A : A \to H\pi_0 A \) induces the identity on \(\pi_0 \), so \(\alpha \) is an equivalence by Corollary 1.6. We recalled the second identification in Subsection 1.4. It is clear that \(\pi_0 R = \pi_0 A_{\mathbb{Q}} = \pi_0 A \otimes \mathbb{Q} = \mathbb{Q} \).

(c) Since \(HH_{\ast}(\mathbb{Q}) = \mathbb{Q} \) is trivial in positive degrees, the map \(HH_{\ast}(R) \to HH_{\ast}(\mathbb{Q}) \) is surjective in each degree, so \(\pi_0 \) is a de Rham equivalence if (and only if)
if) \(H_*^{dR}(R) \cong H_*^{dR}(\mathbb{Q}) = \mathbb{Q} \) is trivial in all positive degrees. The homotopy fiber sequence

\[HH(\pi_R) \to HH(R) \to HH(\mathbb{Q}) \]

identifies \(HH_*(\pi_R) \) with the positive-degree part of \(HH_*(R) \), so \(\ker(B) \subset HH_*(\pi_R) \) is the positive-degree part of \(\ker(B) \subset HH_*(R) \). The identification \(\text{im}(B) = \ker(B) \) in positive degrees is of course equivalent to the vanishing of \(H_*^{dR}(R) \) in positive degrees.

(d) The trace map factors as \(tr = F \circ \alpha \). \(\Box \)

\section{Examples from topological \(K \)-theory}

\subsection{Connective \(K \)-theory spectra}

Let \(ku \) be the connective complex \(K \)-theory spectrum, \(ko \) the connective real \(K \)-theory spectrum, and \(\ell = BP(1) \) the Adams summand of \(ku(p) \), for \(p \) an odd prime. These are all commutative \(S \)-algebras. We write \(\Omega^\infty ku = BU \times \mathbb{Z} \), \(\Omega^\infty ko = BO \times \mathbb{Z} \) and \(\Omega^\infty \ell = W \times \mathbb{Z}(p) \) for the underlying infinite loop spaces (see [Ma77, V.3-4]). The homotopy units form infinite loop spaces, namely \(GL_1(ku) = BU \otimes \{ \pm 1 \} \), \(GL_1(ko) = BO \otimes \{ \pm 1 \} \) and \(GL_1(\ell) = W \otimes \mathbb{Z}(p)^x \). The homotopy algebras are \(\pi_* ku = \mathbb{Z}[u] \) with \(|u| = 2, \pi_* ko = \mathbb{Z}[\eta, \alpha, \beta]/(2\eta, \eta^3, \eta \alpha, \alpha^2 - 4\beta) \) with \(|\eta| = 1, |\alpha| = 4, |\beta| = 8 \), and \(\pi_* \ell = \mathbb{Z}(p)[v_1] \) with \(|v_1| = 2p - 2 \). The complexification map \(ko \to ku \) takes \(\eta \) to 0, \(\alpha \) to \(2u^2 \) and \(\beta \) to \(u^4 \). The inclusion \(\ell \to ku(p) \) takes \(v_1 \) to \(u^{p-1} \).

\textbf{Proposition 2.2.} (a) There are \(\pi_0 \)-isomorphisms and rational equivalences

\[\kappa: S[\Omega S^3] \to S[K(\mathbb{Z}, 2)] \to ku \]

of \(S \)-algebras, so \(ku_\mathbb{Q} \simeq HQ[\Omega S^3] \) as homotopy commutative \(HQ \)-algebras, where \(\mathbb{Q}[\Omega S^3] \) is a simplicial \(Q \)-algebra, and \(ku_\mathbb{Q} \simeq HQ[K(\mathbb{Z}, 2)] \) as commutative \(HQ \)-algebras, where \(\mathbb{Q}[K(\mathbb{Z}, 2)] \) is a commutative simplicial \(Q \)-algebra.

(b) There are \(\pi_0 \)-isomorphisms and rational equivalences \(\tilde{\kappa}: S[\Omega S^5] \to ko \) and \(\tilde{\nu}_1: S[\Omega S^{2p-1}] \to \ell \), so \(ko_\mathbb{Q} \simeq HQ[\Omega S^3] \) and \(\ell_\mathbb{Q} \simeq HQ[\Omega S^{2p-1}] \) as \(HQ \)-algebras, where \(\mathbb{Q}[\Omega S^5] \) and \(\mathbb{Q}[\Omega S^{2p-1}] \) are simplicial \(Q \)-algebras.

(c) In particular, there is a rational equivalence \(\kappa: A(S^3) \to K(ku) \) of \(S \)-algebras, a rational equivalence \(A(K(\mathbb{Z}, 3)) \to K(ku) \) of commutative \(S \)-algebras, and a rational equivalence \(\tilde{\kappa}: A(S^5) \to K(ko) \) of \(S \)-modules.

\textbf{Proof.} (a) Let \(BS^3 \to K(\mathbb{Z}, 4) \) represent a generator of \(H^4(BS^3) \). It induces a double loop map \(\Omega S^3 \to K(\mathbb{Z}, 2) \), such that the composite \(S^2 \to \Omega S^3 \to K(\mathbb{Z}, 2) \) represents a generator of \(\pi_2 K(\mathbb{Z}, 2) \). The inclusions \(K(\mathbb{Z}, 2) \simeq BU(1) \to BU_\mathbb{Q} \to GL_1(ku) \) are infinite loop maps, and the generator of \(\pi_2 K(\mathbb{Z}, 2) \) maps to a generator of \(\pi_2 GL_1(ku) \). By adjunction we have an \(E_2 \) ring spectrum map \(S[\Omega S^3] \to S[K(\mathbb{Z}, 2)] \) and an \(E_\infty \) ring spectrum map \(S[K(\mathbb{Z}, 2)] \to ku \), with composite the \(E_2 \) ring spectrum map \(\kappa: S[\Omega S^3] \to ku \).

These are rational equivalences, because \(\pi_* S[\Omega S^3] \otimes Q \cong H_*[\Omega S^3; Q] \cong Q[x] \), \(H_*[K(\mathbb{Z}, 2); Q] \cong Q[\ell] \) and \(\pi_* ku \otimes Q = Q[u] \), with \(\kappa \) mapping \(x \) via \(b \) to \(u \). We may take the Kan loop group of \(S^3 \) (a simplicial group, see e.g. [Wa96]) as our model for \(\Omega S^3 \), and rigidify \(\kappa \) to a map of \(S \)-algebras. Following [FV], there remains an \(E_1 = A_\infty \) operad operad on these \(S \)-algebras and \(\kappa \), which in particular implies that \(\kappa: A(S^3) \to K(ku) \) is homotopy commutative.
(b) For the real case, let \(S^4 \to BO_\oplus \subset GL_1(ko) \) represent a generator of \(\pi_4 GL_1(ko) \). By the loop structure on the target, it extends to a loop map \(\Omega S^5 \to GL_1(ko) \), with left adjoint an \(A_\infty \) ring spectrum map \(\bar{\alpha}: S[\Omega S^5] \to ko \). It is a rational equivalence, because \(\pi_* S[\Omega S^5] \otimes \mathbb{Q} \cong H_* (\Omega S^5; \mathbb{Q}) \cong \mathbb{Q}[y] \) and \(\pi_* ko \otimes \mathbb{Q} = \mathbb{Q}[\alpha] \), with \(\bar{\alpha} \) mapping \(y \) to \(\alpha \). We interpret \(\Omega S^5 \) as the Kan loop group, and form the simplicial \(\mathbb{Q} \)-algebra \(\mathbb{Q}[\Omega S^5] \) as its rational group ring. The Adams summand case is entirely similar, starting with a map \(S^{2p-2} \to W_\oplus \subset GL_1(l) \).

(c) By [FV] and naturality there is an \(A_\infty \) operad action on the induced map of spectra \(A(S^3) = K(S[\Omega S^3]) \to K(ku) \) (rather than of spaces), which we can rigidify to a map of \(S \)-algebras. The \(S \)-algebra multiplication \(A(S^3) \wedge A(S^3) \to A(S^3) \) is induced by the group multiplication \(S^3 \times S^3 \to S^3 \). \(\square \)

Lemma 2.3. (a) For any integer \(n \geq 1 \) the simplicial \(\mathbb{Q} \)-algebra \(R = \mathbb{Q}[\Omega S^{2n+1}] \) has Hochschild homology

\[
HH_*(R) \cong \mathbb{Q}[x] \otimes E(dx)
\]

with \(|x| = 2n \), where Connes’ \(B \)-operator satisfies \(B(x) = dx \). Here \(E(-) \) denotes the exterior algebra. (b) The de Rham homology \(H^{dR}_*(R) \cong \mathbb{Q} \) is concentrated in degree zero, so \(\pi_* R : R \to \mathbb{Q} \) is a de Rham equivalence. (c) The positive-degree part of \(\ker(B) \subset HH_*(R) \) is

\[
\mathbb{Q}[x]\{dx\} = \mathbb{Q}\{dx, x dx, x^2 dx, \ldots\}.
\]

Proof. (a) The Hochschild filtration on the bisimplicial \(\mathbb{Q} \)-algebra \(HH(R) \) yields a spectral sequence

\[
E^2_{*,*} = HH_*(\pi_*(R)) \Rightarrow HH_*(R),
\]

and \(\pi_*(R) = \mathbb{Q}[x] \) with \(|x| = 2n \). The Hochschild homology of this graded commutative ring is \(\mathbb{Q}[x] \otimes E(dx) \), where \(dx \in E^2_{1,2n} \) is the image of \(x \) under Connes’ \(B \)-operator. The spectral sequence collapses at that stage, for bidegree reasons.

(b,c) The \(B \)-operator is a derivation, hence takes \(x^m \) to \(mx^{m-1} dx \) for all \(m \geq 0 \). It follows easily that the de Rham homology is trivial in positive degrees, and that \(\ker B \) is as indicated. \(\square \)

By combining Corollary 1.9, Proposition 2.2 and Lemma 2.3, we obtain the following result.

Theorem 2.5. (a) There is a rationally split homotopy fiber sequence

\[
K(\pi_{ku}) \to K(ku) \xrightarrow{\pi} K(\mathbb{Z})
\]

and the trace map \(\text{tr} : K(ku) \to \text{THH}(ku) \) identifies

\[
K_*(\pi_{ku}) \otimes \mathbb{Q} \cong \mathbb{Q}[u]\{du\}
\]

with its image in \(\text{THH}_*(ku) \otimes \mathbb{Q} \cong \mathbb{Q}[u] \otimes E(du) \). Here \(|u| = 2 \) and \(|du| = 3 \), so \(K(\pi_{ku}) \) has Pontryagin classes \(t^3/(1-t^2) \).
(b) Similarly, there are rationally split homotopy fiber sequences

\[K(\pi_{ko}) \to K(ko) \xrightarrow{\pi} K(\mathbb{Z}) \]
\[K(\pi_\ell) \to K(\ell) \xrightarrow{\pi} K(\mathbb{Z}_p) \]

and the trace maps identify

\[K_*(\pi_{ko}) \otimes \mathbb{Q} \cong \mathbb{Q}[\alpha]\{d\alpha\} \]
\[K_*(\pi_\ell) \otimes \mathbb{Q} \cong \mathbb{Q}[v_1]\{dv_1\} \]

with their images in \(\text{THH}_*(ko) \otimes \mathbb{Q} \cong \mathbb{Q}[\alpha] \otimes E(d\alpha) \) and \(\text{THH}_*(\ell) \otimes \mathbb{Q} \cong \mathbb{Q}[v_1] \otimes E(dv_1) \), respectively. Hence \(K(\pi_{ko}) \) has Poincaré series \(t^5/(1 - t^4) \), whereas \(K(\pi_\ell) \) has Poincaré series \(t^{2p-1}/(1 - t^{2p-2}) \).

Remark 2.6. The Poincaré series of \(K(\mathbb{Z}) \) is \(1 + t^5/(1 - t^4) \) by Borel’s calculation [Bo74]. Hence the (common) Poincaré series of \(K(ku) \) and \(A(S^3) \) is

\[1 + t^3/(1 - t^2) + t^5/(1 - t^4) = 1 + (t^3 + 2t^5)/(1 - t^4) , \]

whereas the Poincaré series of \(K(ko) \) and \(A(S^5) \) is \(1 + 2t^5/(1 - t^4) \). More generally, we recover the Poincaré series \(1 + t^5/(1 - t^4) + t^{2n+1}/(1 - t^{2n}) \) of \(A(S^{n+1}) \) for \(n \geq 1 \), from [HS82, Cor. 1.2]. The group \(K_1(\mathbb{Z}_p) \) is not finitely generated, so we do not discuss the Poincaré series of \(K(\ell) \).

2.7. Periodic \(K \)-theory spectra. Let \(KU \) be the periodic complex \(K \)-theory spectrum, \(KO \) the periodic real \(K \)-theory spectrum, and \(L = E(1) \) the Adams summand of \(KU(p) \); for \(p \) an odd prime. We have maps of commutative \(S \)-algebras

\[\mathbb{H} \varphi \xrightarrow{\pi} ku \xrightarrow{\varphi} KU \]

with associated maps of “brave new” affine schemes [TV, §2]

\[(2.8) \quad \text{Spec}(\mathbb{Z}) \xrightarrow{\pi} \text{Spec}(ku) \xleftarrow{\varphi} \text{Spec}(KU) . \]

Let \(i : S \to S[\Omega S^3] \) and \(c : S[\Omega S^3] \to S \) be induced by the inclusion map \(* \to S^3 \) and the collapse map \(S^3 \to * \), respectively. We have a map of horizontal cofiber sequences

\[(2.9) \quad \Sigma^2 S[\Omega S^3] \xrightarrow{x} S[\Omega S^3] \xrightarrow{c} S \]
\[\Sigma^2 ku \xrightarrow{u} ku \xrightarrow{\pi} \mathbb{H} \]

where the top row exhibits \(S \) as a two-cell \(S[\Omega S^3] \)-module, and the bottom row exhibits \(\mathbb{H} \) as a two-cell \(ku \)-module. (In each case, the two cells are in dimension zero and three.) There are algebraic \(K \)-theory transfer maps \(c_* : A(*) \to A(S^3) \) and \(\pi_* : K(\mathbb{Z}) \to K(ku) \) (with a lower star, in accordance with the variance conventions from algebraic geometry and (2.8)), that are induced by the functors that view finite cell \(S \)-modules as finite cell \(S[\Omega S^3] \)-modules, and finite cell \(\mathbb{H} \)-modules as
finite cell ku-modules, respectively. In terms of retractive spaces, c_\ast is induced by the exact functor $\mathcal{R}_f(\ast) \to \mathcal{R}_f(S^3)$ that takes a pointed space $X \sim \ast$ to the retractive space $X \times S^3 \sim S^3$. The transfer maps are compatible, by (2.9), so we have a commutative diagram with vertical rational equivalences

\[A(\ast) \xrightarrow{c_\ast} A(S^3) \xrightarrow{\lambda} K(\mathbb{Z}) \xrightarrow{\pi_\ast} K(ku) \xrightarrow{\rho} K(KU). \]

The bottom row is a homotopy fiber sequence by the localization theorem of [BM].

Lemma 2.11. The transfer map $c_\ast : A(\ast) \to A(S^3)$ is null-homotopic, as a map of $A(\ast)$-module spectra. The transfer map $\pi_\ast : K(\mathbb{Z}) \to K(ku)$ is rationally null-homotopic, again as a map of $A(\ast)$-module spectra.

Proof. The projection formula asserts that c_\ast is an $A(S^3)$-module map, where $c : A(S^3) \to A(\ast)$ makes $A(\ast)$ an $A(S^3)$-module. Restricting the module structures along $i : A(\ast) \to A(S^3)$, we see that c_\ast is a map of $A(\ast)$-module spectra, and the source is a free $A(\ast)$-module of rank one. Hence it suffices to show that c_\ast takes a generator of $\pi_0 A(\ast)$, represented say by $S^0 \sim \ast$, to zero in $\pi_0 A(S^3) \cong \mathbb{Z}$. But c_\ast maps that generator to the class of $S^0 \times S^3 \sim S^3$, which corresponds to its Euler characteristic $\chi(S^3) = 0$.

The conclusion for π_\ast follows from that for c_\ast, via the rational equivalences λ and κ. \qed

Note the utility of the comparison with A-theory at this point, since we do not have an S-algebra map $K(\mathbb{Z}) \to K(ku)$ that is analogous to $i : A(\ast) \to A(S^3)$.

Theorem 2.12. There are rationally split homotopy fiber sequences

\[K(ku) \xrightarrow{L} K(KU) \xrightarrow{\partial} BK(\mathbb{Z}) \]

\[K(\ell) \xrightarrow{L} K(L) \xrightarrow{\partial} BK(\mathbb{Z}_p) \]

of infinite loop spaces. Hence the Poincaré series of $K(KU)$ is

\[(1 + t) + (t^3 + 2t^5 + t^6)/(1 - t^4). \]

Proof. The claims for KU follow by combining Theorem 2.5(a) and Lemma 2.11. The proof of the claim for L is completely similar, using that $HZ(\mathbb{Z}_p)$ is a two-cell ℓ-module, with cells in dimension zero and $(2p - 1)$. By [BM] there is a homotopy fiber sequence $K(\mathbb{Z}_p) \to K(\ell) \to K(L)$. \qed

Remark 2.13. We do not know how to relate $K(ko)$ with $K(KO)$, so we do not have a rational calculation of $K(KO)$. However, $KO \to KU$ is a $\mathbb{Z}/2$-Galois extension of commutative S-algebras, in the sense of [Ro, §4.1], so it is plausible that $K(KO) \to K(KU)^{\mathbb{Z}/2}$ is close to an equivalence. Here $\mathbb{Z}/2$ acts on KU by complex conjugation, and

\[K(KU)^{\mathbb{Z}/2} \otimes \mathbb{Q} \cong K(KU) \otimes \mathbb{Q}^{\mathbb{Z}/2}. \]
The conjugation action on \(ku \) fixes \(K(\mathbb{Z}) \), and acts on \(K_*(\pi_{ku}) \otimes \mathbb{Q} \cong \mathbb{Q}[u] \{ du \} \) by sign on \(u \) and \(du \), hence fixes \(\mathbb{Q}[u^2\{ udu \}] \cong \mathbb{Q}[\alpha] \{ da \} \cong K_*(\pi_{ko}) \otimes \mathbb{Q} \). So \(K(ko) \to K(ku)^{h\mathbb{Z}/2} \) is a rational equivalence. The conjugation action also fixes \(BK(\mathbb{Z}) \) after rationalization, so the Poincaré series of \(K(KU)^{h\mathbb{Z}/2} \) is \((1 + t) + (2t^5 + t^6)/(1 - t^4) \).

Remark 2.14. We expect that \(c_* \) and \(\pi_* \) are essential (not null-homotopic) as maps of \(A(S^3) \)-module spectra and \(K(ku) \)-module spectra, respectively. In other words, we expect that \(K(ku) \to K(KU) \to \Sigma K(\mathbb{Z}) \) is a non-split extension of \(K(ku) \)-module spectra. This expectation is to some extent justified by the fact that the cofiber \(THH(ku|KU) \) of the \(THH \)-transfer map \(\pi_* : THH(\mathbb{Z}) \to THH(ku) \) sits in a non-split extension \(THH(ku) \to THH(ku|KU) \to \Sigma THH(\mathbb{Z}) \) of \(THH(ku) \)-module spectra. See [Au05, 10.4], or [HM03, Lemma 2.3.3] for a similar result in an algebraic case.

§3. Examples from smooth bordism

3.1. Oriented bordism spectra. Let \(MU \) be the complex bordism spectrum, \(MSO \) the real oriented bordism spectrum, and \(MSP \) the symplectic bordism spectrum. These are all connective commutative \(S \)-algebras, given by the Thom spectra associated to infinite loop maps from \(BU \), \(BSO \) and \(BSP \) to \(BSF = BSL_1(S) \), respectively. We recall that

\[
H_*(BU) \cong \mathbb{Z}[b_k \mid k \geq 1]
\]

with \(|b_k| = 2k \), while \(H_*(BSO; \mathbb{Z}[1/2]) \cong H_*(BSp; \mathbb{Z}[1/2]) \cong \mathbb{Z}[1/2][q_k \mid k \geq 1] \) with \(|q_k| = 4k \).

The Thom equivalence \(\theta : MU \wedge MU \to MU \wedge S[BU] \) induces an equivalence \(HZ \wedge MU \cong HZ \wedge S[BU] = HZ[BU] \). Combined with the Hurewicz map \(\pi : S \to HZ \) we obtain a chain of maps of commutative \(S \)-algebras

\[
MU \to HZ \wedge MU \cong HZ[BU] \leftarrow S[BU],
\]

that are \(\pi_0 \)-isomorphisms and rational equivalences. There are similar chains \(MSO \to HZ \wedge MSO \cong HZ[BSO] \leftarrow S[BSO] \) and \(MSP \to HZ \wedge MSP \cong HZ[BSp] \leftarrow S[BSp] \), and all induce rational equivalences

\[
\begin{align*}
K(MU) & \to K(\mathbb{Z}[BU]) \leftarrow A(BBU) \\
K(MSO) & \to K(\mathbb{Z}[BSO]) \leftarrow A(BBSO) \\
K(MSp) & \to K(\mathbb{Z}[BSp]) \leftarrow A(BBSp)
\end{align*}
\]

of commutative \(S \)-algebras. Here we view \(BU \cong \Omega BBU \) as the Kan loop group of \(BBU \), \(\mathbb{Z}[BU] \) is the associated simplicial ring, and similarly for \(BSO \) and \(BSP \).

Lemma 3.3. (a) The simplicial \(\mathbb{Q} \)-algebra \(R = \mathbb{Q}[BU] \) with \(\pi_* R = H_*(BU; \mathbb{Q}) = \mathbb{Q}[b_k \mid k \geq 1] \) has Hochschild homology

\[
HH_*(R) \cong \mathbb{Q}[b_k \mid k \geq 1] \otimes E(db_k \mid k \geq 1),
\]

with Poincaré series

\[
h(t) = \prod \frac{1 + t^{2k+1}}{1 - t^{2k}},
\]
and Connes’ operator acts by $B(b_k) = db_k$.

(b) The de Rham homology $H^R_*(R) \cong \mathbb{Q}$ is concentrated in degree zero, so $\pi_R: R \to \mathbb{Q}$ is a de Rham equivalence.

(c) The Poincaré series of $\ker(B) \subset HH_*(R)$ is

$$k(t) = \frac{1 + th(t)}{1 + t}.$$

(d) The simplicial \mathbb{Q}-algebra $R_{so} = \mathbb{Q}[BSO] \simeq \mathbb{Q}[BSp]$, with $\pi_* R_{so} = \mathbb{Q}[q_k \mid k \geq 1]$, has Hochschild homology

$$HH_*(R_{so}) \cong \mathbb{Q}[q_k \mid k \geq 1] \otimes E(dq_k \mid k \geq 1).$$

Its Poincaré series is $h_{so}(t) = \prod_{k \geq 1} (1 + t^{4k+1})/(1 - t^{4k})$. The map $R_{so} \to \mathbb{Q}$ is a de Rham equivalence, and $\ker(B) \subset HH_*(R_{so})$ has Poincaré series $k_{so}(t) = (1 + th_{so}(t))/(1 + t)$.

Proof. (a) In this case the spectral sequence (2.4) has $E^2_{ss} = HH_*(\mathbb{Q}[b_k \mid k \geq 1]) \cong \mathbb{Q}[b_k \mid k \geq 1] \otimes E(db_k \mid k \geq 1)$. The algebra generators are in filtrations 0 and 1, so $E^2 = E^\infty$. This term is free as a graded commutative \mathbb{Q}-algebra, so $HH_*(R)$ is isomorphic to the E^∞-term.

(b) The homology of $\mathbb{Q}[b_k] \otimes E(db_k)$ with respect to B is just \mathbb{Q}, for each $k \geq 1$, so by the Künneth theorem the de Rham homology of $HH_*(R)$ is also just \mathbb{Q}.

(c) Write H_n for $HH_n(R)$ and K_n for $\ker(B: H_n \to H_{n+1})$. Let $h_n = \dim_\mathbb{Q} H_n$, so $h(t) = \sum_{n \geq 0} h_n t^n$, and $k_n = \dim_\mathbb{Q} K_n$. In view of the exact sequence

$$0 \to \mathbb{Q} \to H_0 \overset{d}{\to} H_1 \overset{d}{\to} \cdots \overset{d}{\to} H_{n-1} \to K_n \to 0$$

we find that $1 - (-1)^n k_n = h_0 - h_1 + \cdots + (-1)^{n-1} h_{n-1}$, so

$$\sum_{n \geq 0} t^n k_n - \sum_{n \geq 0} (-t)^n = th(t) - t^2 h(t) + \cdots + (-t)^{m+1} h(t) + \cdots.$$

It follows that the Poincaré series $k(t) = \sum_{n \geq 0} k_n t^n$ for $\ker(B)$ satisfies $k(t) - 1/(1 + t) = th(t)/(1 + t)$.

(d) The only change from the complex to the oriented real and symplectic cases is in the grading of the algebra generators, which (as long as they remain in even degrees) plays no role for the proofs. □

Theorem 3.4. (a) There is a rationally split homotopy fiber sequence

$$K(\pi_{MU}) \to K(MU) \overset{\pi}{\to} K(\mathbb{Z})$$

and the trace map $tr: K(MU) \to THH(MU)$ identifies $K_*(\pi_{MU}) \otimes \mathbb{Q}$ with the positive-degree part of $\ker(B)$ in

$$THH_*(MU) \otimes \mathbb{Q} \cong \mathbb{Q}[b_k \mid k \geq 1] \otimes E(db_k \mid k \geq 1),$$

where $|b_k| = 2k$ and $B(b_k) = db_k$. Hence $K(\pi_{MU})$ has Poincaré series

$$k(t) - 1 = \frac{th(t) - t}{1 + t}.$$
(b) There are rationally split homotopy fiber sequences

\[K(\pi_{MSO}) \to K(MSO) \xrightarrow{\pi} K(\mathbb{Z}) \]
\[K(\pi_{MSP}) \to K(MSp) \xrightarrow{\pi} K(\mathbb{Z}) \]

and the trace maps identify both \(K_*(\pi_{MSO}) \otimes \mathbb{Q} \) and \(K_*(\pi_{MSP}) \otimes \mathbb{Q} \) with the positive-degree part of \(\ker(B) \) in

\[THH_*(MSO) \otimes \mathbb{Q} \cong THH_*(MSp) \otimes \mathbb{Q} \cong \mathbb{Q}[q_k \mid k \geq 1] \otimes E(dq_k \mid k \geq 1), \]

where \(|q_k| = 4k\) and \(B(q_k) = dq_k\). Hence \(K(\pi_{MSO}) \) and \(K(\pi_{MSP}) \) both have Poincaré series \(k_{so}(t) = (th_{so}(t) - t) / (1 + t) \).

\textbf{Remark 3.5.} Adding the Poincaré series of \(K(\mathbb{Z}) \), as in Remark 2.6, we find that the Poincaré series of \(K(MU) \) and \(A(BBU) \) is

\[\frac{t^5}{1 - t^4} + \frac{1 + th(t)}{1 + t}, \]

whereas the Poincaré series of \(K(MSO), A(BBSO), K(MSp) \) and \(A(BBSp) \) is \(t^5 / (1 - t^4) + (1 + th_{so}(t)) / (1 + t) \).

\section{Units, Determinants and Traces}

\textbf{4.1. Units.} For each connective \(S \)-algebra \(A \) there is a natural map of spaces

\[w: BGL_1(A) \to K(A) \]

that factors as the infinite stabilization map \(BGL_1(A) \to BGL_\infty(A) \), composed with the inclusion \(BGL_\infty(A) \to BGL_\infty(A)^+ \) into Quillen’s plus construction, and followed by the inclusion of \(BGL_\infty(A)^+ \cong \{1\} \times BGL_\infty(A)^+ \) into \(K_0(\pi_0 A) \times BGL_\infty(A)^+ = K(A) \).

\textbf{Remark 4.2.} This \(w \) is an \(E_\infty \) map with respect to the multiplicative \(E_\infty \) structure on \(K(A) \) that is induced by the smash product over \(A \). However, we shall only work with the additive grouplike \(E_\infty \) structure on \(K(A) \), which comes from viewing \(K(A) \) as the underlying infinite loop space of the \(K \)-theory spectrum. So when we refer to infinite loop structures below, we are thinking of the additive ones.

We write \(BSL_1(A) = BGL_1(\pi_A) \) for the homotopy fiber of the map \(BGL_1(A) \to BGL_1(\pi_0 A) \) induced by \(\pi_A: A \to H\pi_0 A \). In the resulting diagram

\[BSL_1(A) \xrightarrow{w} K(A) \xrightarrow{\pi} K(\pi_0 A) \]

the composite map has a preferred null-homotopy (to the base point of the 1-component of \(K(\pi_0 A) \)). The diagram is a rational homotopy fiber sequence if and only if \(w: BSL_1(A) \to K(\pi_A) \) is a rational equivalence. Note that the natural inclusion \(\{1\} \times BGL_\infty(\pi_A)^+ \to K(\pi_A) \) induces a homotopy equivalence

\[BGL_\infty(\pi_A)^+ \cong K(\pi_A), \]

since \(K(\pi_A) \cong K(\pi_A) \).
4.4. **Determinants.** Suppose furthermore that \(A \) is commutative as an \(S \)-algebra. One attempt at proving that \(w \) is injective could be to construct a map \(\det : K(A) \to BGL_1(A) \) with the property that \(\det \circ w \simeq \text{id} \). However, no such determinant map exists in general, as the following adaption of [Wa82, 3.7] shows.

Example 4.5. When \(A = S \), the map \(\lambda \circ w : BF = BGL_1(S) \to A(*) \to K(\mathbb{Z}) \) factors through \(BGL_1(\mathbb{Z}) \cong K(\mathbb{Z}/2, 1) \), and \(\pi_2(\lambda) : \pi_2A(*) \to K_2(\mathbb{Z}) \cong \mathbb{Z}/2 \) is an isomorphism, so \(\pi_2(w) : \pi_2BF \to \pi_2A(*) \) is the zero map. But \(\pi_2BF \cong \pi_1(S) \cong \mathbb{Z}/2 \) is not zero, so \(\pi_2(w) \) is not injective. In particular, \(w \) is not split injective up to homotopy.

However, it is possible to construct a rationalized determinant map. Recall from Subsection 1.1 that \(A_\mathbb{Q} \) is equivalent to \(HR \) for some naturally determined commutative simplicial \(\mathbb{Q} \)-algebra \(R \).

Lemma 4.6. Let \(R \) be a commutative simplicial ring. There is a natural infinite loop map
\[
\det : BGL_\infty(R)^+ \to BGL_1(R)
\]
that agrees with the usual determinant map for discrete commutative rings, such that the composite with \(w : BGL_1(R) \to BGL_\infty(R)^+ \) equals the identity.

Proof. The usual matrix determinant \(\det : M_n(R) \to R \) induces a simplicial group homomorphism \(GL_n(R) \to GL_1(R) \) and a pointed map \(BGL_n(R) \to BGL_1(R) \) for each \(n \geq 0 \). These stabilize to a map \(BGL_\infty(R) \to BGL_1(R) \), which extends to an infinite loop map
\[
\det : BGL_\infty(R)^+ \to BGL_1(R),
\]
unique up to homotopy, by the multiplicative infinite loop structure on the target and the universal property of Quillen’s plus construction. To make the construction natural, we fix a choice of extension in the initial case \(R = \mathbb{Z} \), and define \(\det_R \) for general \(R \) as the dashed pushout map in the following diagram:

\[
\begin{array}{ccc}
BGL_\infty(\mathbb{Z}) & \longrightarrow & BGL_\infty(\mathbb{Z})^+ \\
\downarrow & & \downarrow \text{det}_\mathbb{Z} \\
BGL_\infty(R) & \longrightarrow & BGL_\infty(R)^+ \quad BGL_1(\mathbb{Z}) \\
\downarrow \text{det}_{\mathbb{Z}} & & \downarrow \\
BGL_1(R) & & BGL_1(R)
\end{array}
\]

(Recall that Quillen’s plus construction is made functorial by demanding that the left hand square is a pushout.) □

Proposition 4.7. Let \(A \) be a connective commutative \(S \)-algebra. There is a natural infinite loop map
\[
\det_\mathbb{Q} : BGL_\infty(A)^+ \to BGL_1(A)_\mathbb{Q}
\]
that agrees with the rationalized determinant map for a commutative ring \(R \) when \(A = HR \), such that the composite
\[
BGL_1(A) \xrightarrow{w} BGL_\infty(A)^+ \xrightarrow{\det_\mathbb{Q}} BGL_1(A).
\]
is homotopic to the rationalization map.

Proof. We define \det_Q as the dashed pullback map in the following diagram

$$
\begin{array}{c}
\xymatrix{
BGL_\infty(A)^+ \ar[r]^{\det_Q} \ar[d]_{\det_{\pi_0A}} & BGL_\infty(A_Q)^+ \ar[d]^{\det'_R} \\
BGL_\infty(\pi_0A)^+ \ar[d] \ar[r] & BGL_1(A)_Q \ar[r] & BGL_1(A_Q) \\
BGL_1(\pi_0A)_Q \ar[d] \ar[r] & BGL_1(\pi_0A_Q) \\
BGL_1(\pi_0A)_Q \ar[r] & BGL_1(\pi_0A_Q)
}
\end{array}
$$

where the vertical maps are induced by the Postnikov section $\pi: A \to H\pi_0A$, and the horizontal maps are induced by the rationalization $q: A \to A_Q$. The right hand square is a homotopy pullback, since $SL_1(A)_Q \simeq SL_1(A_Q)$.

To define the map \det'_R, we take R to be a commutative simplicial \mathbb{Q}-algebra such that $A_Q \simeq HR$ as commutative HQ-algebras. A natural choice can be made for R, as discussed in Subsection 1.1, such that the identification $\pi_0A_Q \cong \pi_0R$ is the identity. Then \det'_R is the composite map

$$
BGL_\infty(A_Q)^+ \simeq BGL_\infty(R)^+ \xrightarrow{\det_R} BGL_1(R) \simeq BGL_1(A_Q),
$$

with \det_R from Lemma 4.6. It strictly covers the map $\det_{\pi_0A_Q}$, so the outer hexagon commutes strictly. This defines the desired map \det_Q.

To compare \det_Q with $q: BGL_1(A) \to BGL_1(A)_Q$, note that both maps have the same composite to $BGL_1(\pi_0A)_Q$, they have homotopic composites to $BGL_1(A_Q)$, and all composites (and homotopies) to $BGL_1(\pi_0A_Q)$ are equal. Hence the maps to the homotopy pullback are homotopic, too. \hfill \square

Theorem 4.8. (a) The relative unit map

$$
BBU_{\otimes} = BGL_1(\pi_{ku}) \xrightarrow{w} BGL_\infty(\pi_{ku})^+ \simeq K(\pi_{ku})
$$

is a rational equivalence, with rational homotopy inverse given by the relative rational determinant map

$$
\det_Q: BGL_\infty(\pi_{ku})^+ \to BGL_1(\pi_{ku})_Q = (BBU_{\otimes})_Q.
$$

(b) The relative unit maps

$$
BB_{\otimes} = BGL_1(\pi_{ko}) \to K(\pi_{ko})
$$

are rational equivalences (with rational homotopy inverse \det_Q in each case).

Proof. (a) By Proposition 4.7, the composite

$$
BBU \xrightarrow{w} K(\pi_{ku}) \xrightarrow{\det_Q} (BBU_{\otimes})_Q
$$

is homotopic to the rationalization map.

Proof. We define \det_Q as the dashed pullback map in the following diagram

$$
\begin{array}{c}
\xymatrix{
BGL_\infty(A)^+ \ar[r]^{\det_Q} \ar[d]_{\det_{\pi_0A}} & BGL_\infty(A_Q)^+ \ar[d]^{\det'_R} \\
BGL_\infty(\pi_0A)^+ \ar[d] \ar[r] & BGL_1(A)_Q \ar[r] & BGL_1(A_Q) \\
BGL_1(\pi_0A)_Q \ar[d] \ar[r] & BGL_1(\pi_0A_Q) \\
BGL_1(\pi_0A)_Q \ar[r] & BGL_1(\pi_0A_Q)
}
\end{array}
$$

where the vertical maps are induced by the Postnikov section $\pi: A \to H\pi_0A$, and the horizontal maps are induced by the rationalization $q: A \to A_Q$. The right hand square is a homotopy pullback, since $SL_1(A)_Q \simeq SL_1(A_Q)$.

To define the map \det'_R, we take R to be a commutative simplicial \mathbb{Q}-algebra such that $A_Q \simeq HR$ as commutative HQ-algebras. A natural choice can be made for R, as discussed in Subsection 1.1, such that the identification $\pi_0A_Q \cong \pi_0R$ is the identity. Then \det'_R is the composite map

$$
BGL_\infty(A_Q)^+ \simeq BGL_\infty(R)^+ \xrightarrow{\det_R} BGL_1(R) \simeq BGL_1(A_Q),
$$

with \det_R from Lemma 4.6. It strictly covers the map $\det_{\pi_0A_Q}$, so the outer hexagon commutes strictly. This defines the desired map \det_Q.

To compare \det_Q with $q: BGL_1(A) \to BGL_1(A)_Q$, note that both maps have the same composite to $BGL_1(\pi_0A)_Q$, they have homotopic composites to $BGL_1(A_Q)$, and all composites (and homotopies) to $BGL_1(\pi_0A_Q)$ are equal. Hence the maps to the homotopy pullback are homotopic, too. \hfill \square

Theorem 4.8. (a) The relative unit map

$$
BBU_{\otimes} = BGL_1(\pi_{ku}) \xrightarrow{w} BGL_\infty(\pi_{ku})^+ \simeq K(\pi_{ku})
$$

is a rational equivalence, with rational homotopy inverse given by the relative rational determinant map

$$
\det_Q: BGL_\infty(\pi_{ku})^+ \to BGL_1(\pi_{ku})_Q = (BBU_{\otimes})_Q.
$$

(b) The relative unit maps

$$
BB_{\otimes} = BGL_1(\pi_{ko}) \to K(\pi_{ko})
$$

are rational equivalences (with rational homotopy inverse \det_Q in each case).

Proof. (a) By Proposition 4.7, the composite

$$
BBU \xrightarrow{w} K(\pi_{ku}) \xrightarrow{\det_Q} (BBU_{\otimes})_Q
$$

is homotopic to the rationalization map.
is a rational equivalence, so \(w\) is rationally injective. Here \(\pi_* BBU_\otimes \cong \pi_{* - 1} BU_\otimes\) has Poincaré series \(t^3/(1 - t^2)\), just like \(K(\pi_{*u})\) by Theorem 2.5(a). Thus \(w\) is a rational equivalence.

(b) The same proof works for \(\kappa_0\) and \(\ell_0\), using that \(BBO_\otimes\) and \(BW_\otimes\) have Poincaré series \(t^5/(1 - t^4)\) and \(t^{2p-1}/(1 - t^{2p-2})\), respectively. \(\Box\)

Remark 4.9. The analogous map \(w : BSL_1(MU) \to K(\pi_{MU})\) is rationally injective, but not a rational equivalence. For the Poincaré series of the source is

\[t(p(t) - 1) = t^3 + 2t^5 + 3t^7 + 5t^9 + \ldots,\]

where \(p(t) = \prod_{k \geq 1} 1/(1 - t^{2k})\), and the Poincaré series of the target is

\[(th(t) - t)/(1 + t) = t^3 + 2t^5 + 3t^7 + t^8 + 5t^9 + \ldots,\]

by Theorem 3.4(a). These first differ in degree 8, since \(\pi_8 BSL_1(MU) \cong \pi_7 MU\) is trivial, but \(K_8(MU)\) and \(K_8(\pi_{MU})\) have rank one. A generator of the latter group maps to \(db_1 \cdot db_2\) in \(\text{ker}(B) \subset \text{THH}_*(MU) \otimes \mathbb{Q}\).

In the same way, \(w : BSL_1(MSO) \to K(\pi_{MSO})\) and its symplectic variant are rationally injective, but not rational equivalences.

4.10. Traces. Our original strategy for proving that \(w : BGL_1(A) \to K(A)\) is rationally injective for \(A = ku\) was to use the trace map \(tr : K(A) \to \text{THH}(A)\), in place of the rational determinant map. By [Schl04, §4], there is a natural commutative diagram

\[
\begin{array}{ccc}
BGL_1(A) & \xrightarrow{w} & K(A) \\
\downarrow & & \downarrow \\
B^{cy}GL_1(A) & \xrightarrow{K^{cy}} & K(A) \\
\downarrow & & \downarrow \\
GL_1(A) & \xrightarrow{\Omega^\infty A} & \Omega^\infty A
\end{array}
\]

where \(B^{cy}\) and \(K^{cy}\) denote the cyclic bar construction and cyclic \(K\)-theory, respectively. The middle row is the geometric realization of two cyclic maps, hence consists of circle equivariant spaces and maps.

When \(A = ku\), the resulting \(B\)-operator on \(H_*(B^{cy}BGL_1(A); \mathbb{Q})\) takes primitive classes in the image from \(H_*(GL_1(A); \mathbb{Q}) \cong H_*(BU_\otimes; \mathbb{Q})\) to primitive classes generating the image from \(H_*(BGL_1(A); \mathbb{Q}) \cong H_*(BU_\otimes; \mathbb{Q})\), so by a diagram chase we can determine the images of the latter primitive classes in \(H_*(\text{THH}(A); \mathbb{Q})\). By an appeal to the Milnor–Moore theorem [MM65, App.], this suffices to prove that \(tr \circ w\) is rationally injective in this case.

In comparison with the rational determinant approach taken above, this trace method involves more complicated calculations. For commutative \(S\)-algebras, it is therefore less attractive. However, for non-commutative \(S\)-algebras, the trace method may still be useful, since no (rational) determinant map is likely to exist. We have therefore sketched the idea here, with a view to future applications.
§5. Two-vector bundles and elliptic objects

The following discussion elaborates on the second author’s work with Baas and Dundas in [BDR04]. It is intended to explain some of our interest in Theorem 0.1.

5.1. Two-vector bundles. A 2-vector bundle \mathcal{E} of rank n over a base space X is represented by a map $X \to |BGL_n(V)|$, where V is the symmetric bimonoidal category of finite dimensional complex vector spaces. A virtual 2-vector bundle \mathcal{E} over X is represented by a map $X \to K(V)$, where $K(V)$ the algebraic K-theory of the 2-category of finitely generated free V-modules; see [BDR04, Thm. 4.10]. By [BDRR], spectrification induces a weak equivalence $\text{Spt}: K(V) \to K(ku)$, so the 2-vector bundles over X are geometric 0-cycles for the cohomology theory $K(ku)^*(X)$.

5.2. Anomaly bundles. The preferred rational splitting of $\pi: K(ku) \to K(\mathbb{Z})$ defines an infinite loop map

$$\text{det}_Q: K(ku) \to \left(\mathbb{BBU}_\otimes\right)_Q,$$

which extends the rationalization map over $w: \mathbb{BBU}_\otimes \to K(ku)$ and agrees with the relative rational determinant on $K(\pi_{ku})$. (We do not know if there exists an integral determinant map $BGL_{\infty}(ku)^+ \to \mathbb{BBU}_\otimes$ in this case.) We define the rational determinant bundle $|\mathcal{E}| = \text{det}(\mathcal{E})$ of a virtual 2-vector bundle represented by a map $\mathcal{E}: X \to K(V) \simeq K(ku)$, as the composite map

$$|\mathcal{E}|: X \xrightarrow{\mathcal{E}} K(ku) \xrightarrow{\text{det}_Q} \left(\mathbb{BBU}_\otimes\right)_Q.$$

We define the rational anomaly bundle $\mathcal{H} \to \mathcal{L}X$ of \mathcal{E} as the composite map

$$\mathcal{H}: \mathcal{L}X \xrightarrow{\mathcal{L}|\mathcal{E}|} \mathcal{L}\left(\mathbb{BBU}_\otimes\right)_Q \xrightarrow{r_\otimes} \left(\mathbb{BU}_\otimes\right)_Q,$$

where $r: \mathcal{L}\mathbb{BBU}_\otimes \to \mathbb{BU}_\otimes$ is the retraction defined as the infinite loop cofiber of the constant loops map $\mathbb{BBU}_\otimes \to \mathcal{L}\mathbb{BBU}_\otimes$. Up to rationalization, \mathcal{H} is a virtual vector bundle of virtual dimension $+1$, i.e., a virtual line bundle. Furthermore, the anomaly bundle relates the composition $*$ of free loops, when defined, to the tensor product of virtual vector spaces: the square

\begin{equation}
\begin{array}{ccc}
\mathcal{L}X \times \mathcal{L}X & \xrightarrow{(\mathcal{H}, \mathcal{H})} & \left(\mathbb{BU}_\otimes\right)_Q \times \left(\mathbb{BU}_\otimes\right)_Q \\
\downarrow & & \downarrow \\
\mathcal{L}X & \xrightarrow{\mathcal{H}} & \left(\mathbb{BU}_\otimes\right)_Q
\end{array}
\end{equation}

(5.3)

commutes up to coherent isomorphism.

5.4. Gerbes. A 2-vector bundle of rank 1 over X is the same as a \mathbb{C}^\times-gerbe \mathcal{G}, which is represented by a map $\mathcal{G}: X \to \mathbb{BBU}(1)$. When viewed as a virtual 2-vector bundle, via $\mathbb{BBU}(1) \to \mathbb{BBU}_\otimes \to K(ku)$, the associated anomaly bundle is the complex line bundle over $\mathcal{L}X$ that is represented by the composite

$$\mathcal{L}X \xrightarrow{\mathcal{L}\mathcal{G}} \mathcal{L}\mathbb{BBU}(1) \xrightarrow{r} \mathbb{BU}(1).$$

This is precisely the anomaly line bundle for \mathcal{G}, as described in [Br93, §6.2]. Note that the rational anomaly bundles of virtual 2-vector bundles represent general elements in

$$1 + \tilde{K}^0(\mathcal{L}X) \otimes \mathbb{Q} \subset K^0(\mathcal{L}X) \otimes \mathbb{Q},$$

whereas the anomaly line bundles of gerbes only represent elements in $H^2(\mathcal{L}X)$.
5.5. State spaces and action functionals. In physical language, we think of a free loop \(\gamma: S^1 \to X\) as a closed string in a space-time \(X\). For a 2-vector bundle \(\mathcal{E} \to X\), we think of the fiber \(H_\gamma\) (a virtual vector space) at \(\gamma\) of the anomaly bundle \(\mathcal{H} \to \mathcal{L}X\) as the state space of that string. Then the state space of a composite of two strings (or a disjoint union of two strings) is the tensor product of the individual state spaces, as is usual in quantum mechanics. Similarly, the state space of an empty set of strings is \(\mathbb{C}\). In the special case of anomaly line bundles for gerbes, the resulting state spaces are only complex lines, but in our generality they are virtual vector spaces. These are much closer to the Hilbert spaces usually considered in more analytical approaches to this subject.

There is evidence that a two-part differential-geometric structure \((\nabla_1, \nabla_2)\) on \(\mathcal{E}\) over \(X\) (somewhat like a connection for a vector bundle, but providing parallel transport both for objects and for morphisms in the 2-vector bundle) provides \(\mathcal{H} \to \mathcal{L}X\) with a connection, and more generally an action functional

\[
S(\Sigma): H_{\tau_1} \otimes \cdots \otimes H_{\tau_p} \to H_{\tau_1} \otimes \cdots \otimes H_{\tau_q},
\]

where \(\Sigma: F \to X\) is a compact Riemann surface over \(X\), with \(p\) incoming and \(q\) outgoing boundary circles. The time development of the physical system is then given by the Euler–Lagrange equations of the action functional.

In a little more detail, the idea is that the primary form of parallel transport in \((\mathcal{E}, \nabla_1)\) around \(\gamma\) provides an endo-functor \(\tilde{\gamma}\) of the fiber category \(\mathcal{E}_x \cong \mathcal{V}^n\) over a chosen point \(x\) of \(\gamma\). More precisely, parallel transport only provides a zig-zag of functors connecting \(\mathcal{E}_x\) to itself, but the determinant in \((BU_\otimes)_Q\) is still well-defined. This “holonomy” is then the fiber \(H_\gamma = \det(\tilde{\gamma})\) at \(\gamma\) of the anomaly bundle \(\mathcal{H}\). For a moving string, say on the Riemann surface \(F\), the secondary form of parallel transport \(\nabla_2\) specifies how the holonomy changes with the string, and this defines the connection \(\nabla\) on \(\mathcal{H} \to \mathcal{L}X\). In the gerbe case, this theory has been worked out in [Br93, §5.3], where \(\nabla_1\) is called “connective structure” and \(\nabla_2\) is called “curving”.

For a closed surface \(F\), \(S(\Sigma): \mathbb{C} \to \mathbb{C}\) is multiplication by a complex number, which would only depend on the rational type of \(\mathcal{E}\). Optimistically, this association can produce a conformal invariant of \(F\) over \(X\), which in the case of genus 1 surfaces would lead to an elliptic modular form. Less naively, additional structure derived from a string structure on \(X\) should account for the weight of the modular form. With such structure, a 2-vector bundle \(\mathcal{E}\) with connective structure \(\nabla\) would qualify as a Segal elliptic object over \(X\).

5.6. Open strings. In the presence of D-branes in the space-time \(X\), we can extend the anomaly bundle to also cover open strings with end points restricted to lie on these D-branes; see [Mo04, §3.4]. In this terminology, the (rational) determinant bundle \(|\mathcal{E}| \to X\) plays the role of the \(B\)-field.

By a (rational) D-brane \((\mathcal{W}, E)\) in \(X\) we will mean a subspace \(\mathcal{W} \subset X\) together with a trivialization \(E\) of the restriction of the (rational) determinant bundle \(|\mathcal{E}|\) to \(\mathcal{W}\). In terms of representing maps, \(E\) is a null-homotopy of the composite map

\[
\mathcal{W} \subset X \xrightarrow{\mathcal{E}} K(ku) \xrightarrow{\det_q} (BBU_\otimes)_Q.
\]

In similar terminology, we may refer to the determinant bundle \(|\mathcal{E}| \to X\) as the (rational) \(B\)-field.
When the B-field $|\mathcal{E}|$ is rationally trivial, then a second choice of trivialization E amounts to a choice of null-homotopy of the trivial map $\mathcal{W} \to (BBU_\otimes)_Q$, or equivalently to a map $E: \mathcal{W} \to (BU_\otimes)_Q$. In other words, E is a virtual vector bundle over \mathcal{W} of virtual dimension $+1$, up to rationalization. In this case, the K-theory class of $E \to \mathcal{W}$ in $1 + \tilde{K}_0(\mathcal{W}) \otimes \mathbb{Q}$ is the “charge” of the D-brane (\mathcal{W}, E). This conforms with the (early) view on D-branes as coming equipped with a charge $[E]$ in topological K-theory.

For a general B-field $|\mathcal{E}|$, the possible trivializations E of its restriction to \mathcal{W} instead form a torsor under the group $1 + \tilde{K}_0(\mathcal{W}) \otimes \mathbb{Q}$. For two such trivializations E and E' differ by a loop of maps $\mathcal{W} \to (BBU_\otimes)_Q$, or equivalently a map $E' - E: \mathcal{W} \to (BU_\otimes)_Q$. So $[E' - E]$ is a topological K-theory class measuring the charge difference between the two D-branes (\mathcal{W}, E) and (\mathcal{W}, E').

Given two D-branes (\mathcal{W}_0, E_0) and (\mathcal{W}_1, E_1) in (X, \mathcal{E}), we have a commutative diagram

$$
\begin{array}{ccc}
\mathcal{W}_0 & \xrightarrow{E_0} & X \\
\downarrow \quad \quad \quad \downarrow & & \downarrow \quad \quad \quad \downarrow \\
P(BBU_\otimes)_Q & \xrightarrow{\pi} & (BBU_\otimes)_Q \\
\end{array}
$$

where $\pi: PY \to Y$ denotes the path space fibration covering a based space Y. An open string in X, constrained to \mathcal{W}_0 and \mathcal{W}_1 at its ends, is a map $\gamma: I \to X$ with $\gamma(0) \in \mathcal{W}_0$ and $\gamma(1) \in \mathcal{W}_1$. In other words, it is an element in the homotopy pullback of the top row in the diagram above. Let $\Omega(X, \mathcal{W}_0, \mathcal{W}_1)$ denote the space of such open strings. The homotopy pullback of the lower row is $\Omega(BBU_\otimes)_Q \cong (BU_\otimes)_Q$. Hence the 2-vector bundle \mathcal{E} and the two D-branes specify a map of homotopy pullbacks

$$
\mathcal{H}: \Omega(X, \mathcal{W}_0, \mathcal{W}_1) \to (BU_\otimes)_Q
$$

that we call the (rational, virtual) anomaly bundle of this space of open strings. Again, we think of each fiber H_γ at $\gamma: (I, 0, 1) \to (X, \mathcal{W}_0, \mathcal{W}_1)$ as the state space of that open string.

In the presence of a suitable connection (∇_1, ∇_2) on $\mathcal{E} \to X$, parallel transport in (\mathcal{E}, ∇_1) along γ induces a (zig-zag) functor $\hat{\gamma}$ from \mathcal{E}_x to \mathcal{E}_y, with determinant $\det(\hat{\gamma})$ from the fiber of $|\mathcal{E}|$ at $x = \gamma(0)$ to the fiber at $y = \gamma(1)$. The trivializations of these two fibers provided by the D-brane data E_0 and E_1, respectively, then agree up to a correction term, which is the fiber H_γ in the anomaly bundle:

$$
\det(\hat{\gamma})(E_{0,x}) \cong H_\gamma \otimes E_{1,y}
$$

Again, the secondary part of the connection may induce a connection on \mathcal{H} over $\Omega(X, \mathcal{W}_0, \mathcal{W}_1)$, and more generally an action functional $S(\Sigma)$, where now $\Sigma: F \to X$ and the incoming and the outgoing parts of F are unions of circles and closed intervals. For example, an open string might split off a closed string. One advantage of the above perspective is that the state spaces of open and closed strings arise in a compatible fashion, as the holonomy of parallel transport in the 2-vector bundle \mathcal{E}, and this makes the construction of $S(\Sigma)$ feasible. The gerbe case is discussed in [Ro92, §6.6].
References

Institute of Mathematics, University of Bonn, DE-53115 Bonn, Germany

E-mail address: ausoni@math.uni-bonn.de

Department of Mathematics, University of Oslo, NO-0316 Oslo, Norway

E-mail address: rognes@math.uio.no