NON COMMUTATIVITY OF THE GROUP OF SELF HOMOTOPY
CLASSES OF CLASSICAL SIMPLE LIE GROUPS

MARTIN ARKOWITZ, HIDEAKI ŌSHIMA AND JEFFREY STROM

Abstract. Let G be a topological group and let $[G,G]$ be the group of homotopy classes
of maps from G into G. For a large class of simple Lie groups, we prove that the group
$[G,G]$ is nonabelian. For certain Lie groups we show that $\text{nil}[G,G] \geq 3$.

1. Introduction

Let G be a compact, connected topological group with multiplication $m : G \times G \to G$.
There has been considerable work in homotopy theory to determine when m is homotopy-
commutative [11, 12, 3, 7] that is, when m is homotopic to m^{op}, where m^{op} is defined by
$m^{op}(g, g') = m(g', g)$. For a compact, connected topological group G (and more generally,
a group-like space) and any space X, the set of homotopy classes $[X, G]$ inherits a group
structure from G, and this group is abelian when G is homotopy-commutative. Moreover, it
is easily seen that G is homotopy-commutative if and only if $[X, G]$ is abelian for all spaces
X. The most comprehensive result on the homotopy-commutativity of finite H-spaces is the
theorem of Hubbuck [7] which asserts that the only compact, connected, non-contractible
topological groups G which are homotopy-commutative are tori $S^1 \times \cdots \times S^1$. Thus if G
is not a torus, then $[X, G]$ is non-abelian for some space X and $\text{nil}[X, G]$ is of particular
interest. (Here $\text{nil}\Gamma$ denotes the nilpotency class of the group Γ, so that $\text{nil}\Gamma \geq 2$ if and
only if Γ is not commutative.) In fact, it is a classical result of G. Whitehead [24] that
$$\text{nil}[X, G] \leq \text{cat}(X),$$
where $\text{cat}(X)$ is the reduced Lusternik-Schnirelmann category of X. An important special
case occurs when $X = G$, for then $[G,G]$ has a second binary operation obtained from
composition of homotopy classes. It is a well known algebraic fact that if R is a set which
satisfies all of the axioms for a ring except commutativity of addition, then addition is
commutative. Now $[G,G]$ satisfies all of the axioms of a ring except commutativity of
addition and one distributive law (this is sometimes called a near-ring), so it is reasonable to
ask if addition in $[G,G]$ is commutative when G is a compact, connected, non-contractible
topological group other than a torus. One example that immediately comes to mind is
$[S^3, S^3]$ which is commutative, even though, by Hubbuck’s theorem, the topological group
S^3 is not homotopy-commutative and consequently the group $[S^3 \times S^3, S^3]$ is not abelian.

1991 Mathematics Subject Classification. 55Q05.

Key words and phrases. Lie group, self map, self homotopy class, nilpotency class.
More generally, we would like to know nil(G,G). The homotopical nilpotency nil(G) of a topological group G has been studied by Zabrodsky, Hopkins, Rao and others [25, 6, 22]. Since nil(G,G) is bounded above by nil(G), our results give a lower bound for nil(G). We have an upper bound, \text{cat}(G), for nil(G,G), but are there lower bounds? The following have been conjectured:

\textbf{Conjecture 1.1.} If G is simple, then nil(G,G) \geq \text{rank } G.

\textbf{Conjecture 1.2.} If G is simple of rank \geq 2, then nil(G,G) \geq 2.

If 1.1 is affirmative, then so is 1.2. Notice from Example 1.4 of [20] that these conjectures are false in general without the assumption that G be simple. It is known that cat(SU(n)) = rank SU(n) [23], so in this case Conjecture 1.1 asserts that nil(SU(n),SU(n)) = rank SU(n).

Recently two of us proved 1.2 for SU(n) (n \geq 4) and Sp(n) (n \geq 2) [1]. Recall that any classical compact connected simple Lie group is a quotient of one of the groups SU(n), Sp(n) or Spin(n) by a central subgroup. The purpose of this note is twofold: (1) We extend the results of [A-S] on the noncommutativity of [G,G] for G = Sp(n) and G = SU(n) to the groups G = SU(n)/H, G = Sp(n)/H and G = Spin(4n)/H. This is achieved as follows: we give a simpler proof of the results of [1] and use Lemma 2.1 below to extend these results to G/H; we use a different method for Spin(4n)/H. (2) We obtain larger lower bounds for nil(G,G) in some special cases. This requires a detailed study of certain low dimensional Lie groups.

\textbf{Theorem 1.3.} If the universal covering group of G is SU(n) (n \geq 3), Sp(n) (n \geq 2) or Spin(4n) (n \geq 2), then nil(G,G) \geq 2.

There are results in [16, 19, 20, 21] supporting the above conjectures: (1) nil(G,G) equals 1 if G = S^3, SO(3); nil(G,G) = 2 if G = SU(3), Sp(2), S^3 \times S^3; nil(G,G) = 3 if G = G_2, SU(4), S^3 \times \cdots \times S^3 (n-times) with n \geq 3; (2) nil(E_8,E_8) \geq 5, and nil(G,G) \geq 3 for G = Spin(7), Spin(8), E_6, F_4. Conjecture 1.2 remains open in the following cases: (1) G = Spin(k)/H with k \neq 4n; (2) E_6/Z_3 and E_7/H. We add to the evidence in support of Conjecture 1.1 by proving

\textbf{Proposition 1.4.} nil(SU(4)/H,SU(4)/H) \geq 3 for any central subgroup H of SU(4).

\textbf{Proposition 1.5.} If G = S^3 \times \cdots \times S^3 (n-times) with n \geq 2 and H is a central subgroup of G, then nil(G,H,G/H) \geq \begin{cases} 2 & n = 2 \\ 3 & n \geq 3 \end{cases}.

We note that the conjectured inequality (1.1) and Whitehead’s inequality, namely

\[\text{rank}(G) \leq \text{nil}(G,G) \leq \text{cat}(G) \]

can both be strict for a simple Lie group G. For example, for the exceptional Lie group G_2 it is known that \text{rank}(G_2) = 2, \text{nil}(G_2,G_2) = 3 and \text{cat}(G_2) = 4.
We denote by \tilde{G} the universal covering group of G. In §2 we recall some general results and fix our terminology. In §3 we prove Theorem 1.3 for $\tilde{G} = SU(n)$ and in §4 we prove Proposition 1.4. We obtain Theorem 1.3 for $\tilde{G} = Sp(n)$ in §5 and in §6 we establish Proposition 1.5 and complete the proof of Theorem 1.3.

We would like to thank the referee for his comments, which were helpful in improving the exposition.

(or this?) We would like to thank the referee for his comments, which led us to significantly improve the exposition of this paper.

2. General results

In this paper, we do not distinguish notationally between a map and its homotopy class. We always let p denote an odd prime. The p-localization of a nilpotent group or a nilpotent space Γ is denoted by $\Gamma_{(p)}$ [5]. We write $X \simeq_p Y$ if $X_{(p)} \simeq Y_{(p)}$. Let $\pi: \tilde{G} \to \tilde{G}/H$ be the canonical projection for any central subgroup H of \tilde{G}. Then π is a homomorphism of Lie groups and hence an H-map.

Lemma 2.1. Let Y be a connected, homotopy associative CW H-space.

2. If the Samelson product $\langle \alpha, \beta \rangle$ is not zero for some $\alpha \in \pi_n(Y)$ and $\beta \in \pi_n(Y)$, then nil$[S^m \times S^n, Y] \geq 2$.

3. If $Y \simeq_p X \times S^m \times S^n$ and the order of $\langle \alpha, \beta \rangle$ is a multiple of p for some $\alpha \in \pi_n(Y)$ and $\beta \in \pi_n(Y)$, then nil$[Y,Y]_{(p)} \geq 1$.

4. If H is a central subgroup of \tilde{G} such that $H_{(p)} = 0$, then $[\tilde{G}/H, \tilde{G}/H]_{(p)} \cong [\tilde{G}, \tilde{G}]_{(p)}$.

Proof. (1) is obvious and (2) is Lemma 6.1 of [1].

Since the localizing map $e: Y \to Y_{(p)}$ is an H-map, we have $\langle e_* \alpha, e_* \beta \rangle = e_* \langle \alpha, \beta \rangle \neq 0$ under the assumption of (3). Hence nil$[S^m \times S^n, Y_{(p)}] \geq 2$ by (2). Then (3) follows from (1) and the relations: nil$[Y,Y]_{(p)} = \text{nil}[X \times S^m \times S^n, Y_{(p)}] \geq \text{nil}[S^m \times S^n, Y_{(p)}]$.

Assume $H_{(p)} = 0$. The map $\pi_{(p)}: \tilde{G}_{(p)} \to (\tilde{G}/H)_{(p)}$ is a weak homotopy equivalence so that it is a homotopy equivalence of H-spaces. Hence (4) follows.

For future reference we record the centers of the classical Lie groups (Theorems 4.10, 4.14 of [18]):

$$Z(SU(n)) = \mathbb{Z}_n \{e^{2\pi \sqrt{-1}/n}I_n\}, \quad Z(Sp(n)) = \mathbb{Z}_2 \{-I_n\},$$

$$Z(Spin(n)) = \begin{cases} \mathbb{Z}_4 & n \equiv 2 \pmod{4}, \quad n \geq 6 \\ \mathbb{Z}_2 \oplus \mathbb{Z}_2 & n \equiv 0 \pmod{4}, \quad n \geq 4 \\ \mathbb{Z}_4 & n \equiv 0 \pmod{2}, \quad n \geq 3 \end{cases}$$

where $\mathbb{Z}_n\{x\}$ is the cyclic group of order n generated by x, and I_n is the identity matrix of rank n.

Let $B_n(p)$ be the standard S^{2n+1}-bundle over $S^{2n+2p-1}$ [17] such that

$$H^*(B_n(p);\mathbb{Z}_p) = \Lambda \mathbb{Z}_p(x_{2n+1}, y^1 x_{2n+1}), \quad |x_{2n+1}| = 2n + 1.$$
A Lie group G has type $(2n_1 - 1, 2n_2 - 1, \ldots, 2n_r - 1)$ if

$$H^*(G; \mathbb{Q}) = \Lambda_0(x_{2n_1-1}, x_{2n_2-1}, \ldots, x_{2n_r-1}), \quad |x_k| = k, \quad n_1 \leq n_2 \leq \cdots \leq n_r.$$

The group G is p-regular if and only if $G \simeq_p \prod_{i=1}^r S^{2n_i-1}$; G is quasi p-regular if and only if $G \simeq_p \prod B_{k_i}(p) \times \prod S^{2i_i-1}$ for some $\{k_i\}$ and $\{i_i\}$. If G is simply connected, then G is p-regular if and only if $n_r \leq p$ [13]. If G has no p-torsion, then $H^*(G; \mathbb{Z}_p) = \Lambda_{p_0}(x_{2n_1-1}, \ldots, x_{2n_r-1})$ and $\varphi^1 x_s = x_t$ holds (up to non-zero coefficient) if and only if $t - s = 2(p - 1)$ and $(s - 1)/2 \not\equiv 0 \pmod p$ [17].

3. Nilpotency of the Group $[SU(n), SU(n)]$

Let $b_k(k)$ be a generator of $\pi_{2k-1}(SU(k)) \cong \mathbb{Z}$ for $k \geq 2$ and write $b_k(m) = i_{k,m}b_k(k)$ for $m \geq k$, where $i_{k,m} : SU(k) \rightarrow SU(m)$ is the inclusion. Then $b_k(m)$ is a generator of $\pi_{2k-1}(SU(m)) \cong \mathbb{Z}$. Recall from [2], [13], [17] the following.

Theorem 3.1. (1) The order of $\langle b_k(k + l - 1), b_l(k + l - 1) \rangle \in \pi_{2k+2l-2}(SU(k + l - 1))$ is $(k + l - 1)!/(k - 1)!/(l - 1)!$.

(2) $H^*(SU(n); \mathbb{Z}) = \Lambda_0(x_3, x_5, \ldots, x_{2n-1})$.

(3) $SU(n)$ is p-regular if and only if $n \leq p$.

(4) $SU(n)$ is quasi p-regular if and only if $n/2 < p$.

Corollary 3.2. For $\max\{k, l\} \leq n \leq k + l - 1$, the order of $\langle b_k(n), b_l(n) \rangle \in \pi_{2k+2l-2}(SU(n))$ is a multiple of $(k + l - 1)!/(k - 1)!/(l - 1)!$.

Proof. This follows from Theorem 3.1(1), the equality $i_{n,k+l-1}\langle b_k(n), b_l(n) \rangle = \langle b_k(k + l - 1), b_l(k + l - 1) \rangle$ and the fact that $\pi_{2k+2l-2}(SU(n))$ is finite. \hfill \square

Hence, if $n/2 < p < n$, then

$$SU(n) \simeq_p \prod_{i=1}^{n-p} B_i(p) \times \Gamma(n, p)$$

where

$$\Gamma(n, p) = \begin{cases}
S^{2p-1} & (n + 1)/2 = p < n \\
\prod_{i=-p+2}^{2l-1} S^{2i-1} & (n + 2)/2 < p < n .
\end{cases}$$

Let $n > 5$ and choose p such that $(n + 2)/2 < p < n$. Since the order of $\langle b_{n-p+2}(n), b_p(n) \rangle \in \pi_{2n+2}(SU(n))$ is a multiple of p by Corollary 3.2, it follows that $\text{nil}[SU(n), SU(n)] \geq \text{nil}[SU(n/p), SU(n/p)] \geq 2$ by Lemma 2.1. If H is a subgroup of $Z(SU(n))$, then $H(p) = 0$ since p does not divide n. Therefore $\text{nil}[SU(n)/H, SU(n)/H] \geq 2$ by Lemma 2.1.

We have $SU(5) \simeq S^3 \times S^3 \times S^3 \times S^3 \times S^3$ by 3.1(3). We proceed as in the preceding paragraph. The order of $\langle b_3(5), b_5(5) \rangle \in \pi_{14}(SU(5))$ is a multiple of 7 by Corollary 3.2. Hence $\text{nil}[SU(5), SU(5)] \geq \text{nil}[SU(5/7), SU(5/7)] \geq 2$ by Lemma 2.1. Since $H(7) = 0$ for any subgroup H of $Z(SU(5)) = \mathbb{Z}_5$, we have $\text{nil}[SU(5)/H, SU(5)/H] \geq 2$ by Lemma 2.1.
Similar methods applied to the pairs \((SU(3), 3)\) and \((SU(4), 5)\) yield \(\text{nil}[SU(3), SU(3)] \geq 2\) and \(\text{nil}[SU(4)/H, SU(4)/H] \geq 2\) for any subgroup \(H\) of \(Z(SU(4))\).

Since \(Z(SU(3)) \cong \mathbb{Z}_3\) to complete the proof of Theorem 1.3 for \(SU(n)\), \(n \geq 3\), it suffices to show that \(\text{nil}[PSU(3), PSU(3)] \geq 2\), where \(PSU(3) = SU(3)/Z(SU(3))\). Let \(q : SU(3) \to S^8\) be the quotient map. Consider the following homomorphisms:

\[
[PSU(3), PSU(3)] \xrightarrow{\pi_*} [PSU(3), SU(3)] \xrightarrow{\pi^*} [SU(3), SU(3)] \xrightarrow{q^*} \pi_8(SU(3)).
\]

Since \(\pi_*\) is injective, it suffices to prove \(\text{nil}\text{Im}(\pi^*) \geq 2\). Let \(\psi^3 : SU(n) \to SU(n)\) and \(p_n : SU(n) \to S(C^n)\) be maps such that \(\psi^3(x) = x^3\) and \(p_n(A)\) is the first column of the matrix \(A\), where \(S(C^n) = S^{2n-1}\) is the unit sphere in \(C^n\). Note that \(\psi^3 = (id)^3\). Let \(\widetilde{\psi^3} : PSU(3) \to SU(3)\) be a map such that \(\widetilde{\psi^3} \circ \pi = \psi^3\). We have a commutative diagram:

\[
\begin{array}{ccc}
SU(3) & \xrightarrow{p_3} & S^5 \\
\downarrow{\pi} & & \downarrow{\pi} \\
PSU(3) & \xrightarrow{p_3} & L^5(3) \xrightarrow{q} S^5
\end{array}
\]

where \(L^5(3) = S(C^3)/\mathbb{Z}_3\) is the mod 3 lens space of dimension 5 and the second \(\pi\) is the projection. Then

\[
\pi^*[\widetilde{\psi^3}, b_3(3) \circ q \circ \widetilde{p_3}] = [(id)^3, (b_3(3) \circ p_3)^3],
\]

where \([\alpha, \beta] = \alpha \beta \alpha^{-1} \beta^{-1}\), the commutator of \(\alpha\) and \(\beta\). In any group, we have

\[
[x, yz] = x [y, z] x y z^{-1}, \quad [xy, z] = x [y, z] x y z^{-1} [x, z].
\]

Hence

\[
[x, y^m] = x [y, y^m] x y^{m-1} y^{-1} = \cdots = (x, y^m) y^{m-1} x y^{m-1},
\]

\[
[x^m, z] = x [x^m, z] x^{-1} x [z, x]^{-1} = \cdots = x^m z^{-1} x [z, x]^{-1} z^{-1}
\]

Set \(x = id, y = b_3(3) \circ p_3\) and \(m = 3\). It follows from [21] and [5] (Lemma 6.4 p. 91) that \([x, y] = \pm q^* (b_2(3), b_3(3))\) is a central element; alternatively one could observe that, since \(\text{nil}[SU(3), SU(3)] \leq \text{cat}(SU(3)) = 2\) by (1.1) and [23], all commutators are central in \([SU(3), SU(3)]\). In any case, it follows that \([x, y^3] = [x^3, y] = [x, y]^3\) and

\[
\pi^*[\widetilde{\psi^3}, b_3(3) \circ q \circ \widetilde{p_3}] = [x^3, y^3] = [x, y]^3 = \pm 9q^* (b_2(3), b_3(3)).
\]

Since the order of the last element is 4 by p. 85 of [16], it follows that \(\text{nil}\text{Im}(\pi^*) \geq 2\) as desired.

4. Proof that \(\text{nil}[SU(4)/H, SU(4)/H] \geq 3\)

Let \(H = \mathbb{Z}_m\) be a subgroup of \(Z(SU(4)) = \mathbb{Z}_4\) such that \(m = 2, 4\). We use the following notation in which \(M(n, \mathbb{C})\) denotes the set of \(n \times n\) complex matrices and \(\mathbb{C}[1, j]\) is the
division ring of quaternions.

\[c' : Sp(n) \to SU(2n), \quad c'(X + jY) = \begin{pmatrix} X & -Y \\ Y & X \end{pmatrix}, \quad X, Y \in M(n, \mathbb{C}), \]

\[p' : SU(4) \to SU(4)/c'(Sp(2)) = S^6, \quad \text{the projection}, \]

\[i : SU(3) \to SU(4), \quad i : Sp(1) \to Sp(2), \quad i(A) = \begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix}, \]

\[q : SU(4) \to S^{15}, \quad \text{the quotient map}, \]

\[\pi_5(SU(3)) = \mathbb{Z}\{b_3(3)\}, \quad p_5b_3(3) = 2i_5, \quad \pi_7(SU(4)) = \mathbb{Z}\{b_4(4)\}, \quad p_4b_4(4) = 6i_7. \]

Notice that \(c' \) is a monomorphism.

In [21], we showed that the order of \([id, [b_4(4) \circ p', b_4(4) \circ p_4]] = \pm q^*\langle b_4(4), \langle b_3(4), b_4(4)\rangle \rangle \in [SU(4), SU(4)]\) is a multiple of 3. We shall show that there exist \(a, b, c \in [SU(4)/H, SU(4)] \) such that

\[(id)^m = a \circ \pi, \quad (b_3(4) \circ p')^{m/2} = b \circ \pi, \quad (b_4(4) \circ p_4)^m = c \circ \pi. \]

If this is true, then \(\pi^*[a, [b, c]] = [(id)^m, [(b_3(4) \circ p')^{m/2}, (b_4(4) \circ p_4)^m]]. \) The homotopy commutative diagram (4.1) given below, where \(G = SU(4), \) implies the last element equals \(\pm \frac{m^3}{3}, q^*\langle b_2(4), \langle b_3(4), b_4(4)\rangle \rangle \neq 0. \) Thus nil\[SU(4)/H, SU(4)] \geq 3 and nil\[SU(4)/H, SU(4)/H] \geq 3.

\[
\begin{array}{ccc}
G & \xrightarrow{d} & G \wedge G \wedge G \\
\| & & \downarrow \text{id} \wedge p' \wedge p_4 \\
G \wedge S^5 \wedge S^7 & \xrightarrow{\text{id}^* \wedge (b_2(4))^{m/2} \wedge b_4(4)^m} & G \wedge G \wedge G \\
\downarrow q & & \downarrow C_3 \\
S^{15} \approx S^3 \wedge S^5 \wedge S^7 & \xrightarrow{(mb_2(4), \langle m/2, b_2(4), m \cdot b_4(4) \rangle)} & G
\end{array}
\]

where \(d \) is the diagonal map and \(C_3(x \wedge y \wedge z) = [x, [y, z]]. \)

The existence of \(a \) is obvious. For \(c \) we use the following commutative diagram:

\[
\begin{array}{ccc}
SU(4) & \xrightarrow{p_4^*} & S^7 \\
\pi \downarrow & & \downarrow \pi \\
SU(4)/H & \xrightarrow{\tilde{p}_4} & L^7(m) \\
\downarrow q & & \downarrow q \\
& & S^7
\end{array}
\]

where the second \(\pi \) is the projection \(S(\mathbb{C}^3) \to S(\mathbb{C}^3)/\mathbb{Z}_m = L^7(m). \) Then \(c := b_4(4) \circ q \circ \tilde{p}_4 \) satisfies the desired property.

In the rest of the proof we show the existence of \(b. \)
Lemma 4.1. There exists a homeomorphism \(h : SU(4)/c'(Sp(2)) \approx S^5 = S(C^3) \) which makes the following square commutative:

\[
\begin{array}{c}
SU(4)/c'(Sp(2)) \xrightarrow{h} S^5 \\
\downarrow L_\alpha \\
SU(4)/c'(Sp(2)) \xrightarrow{h} S^5
\end{array}
\]

Here \(L_\alpha \) denotes the multiplying by \(\alpha \) from the left.

By identifying \(SU(4)/c'(Sp(2)) \) with \(S^5 \) by \(h \), we have the following commutative diagram:

\[
\begin{array}{ccc}
SU(4) & \xrightarrow{\varphi'} & SU(4)/\mathbb{Z}_2 \\
\downarrow & & \downarrow \varphi \\
S^5 & \xrightarrow{p'} & S^5 \\
\downarrow & & \downarrow q \\
S^5 & \xrightarrow{2\uparrow} & S^5
\end{array}
\]

where \(\mathbb{P}^5 = S(C^3)/\mathbb{Z}_2 \) is the real projective space of dimension 5. When \(m = 2 \), let \(b = b_3(4) \circ \varphi' \). When \(m = 4 \), let \(b = b_3(4) \circ q \circ \varphi' \). Then these elements satisfy the desired properties.

Proof of Lemma 4.1. Let \(i' : SU(2) \rightarrow SU(3) \) be a monomorphism defined by

\[
i'(a, b, \pi) = \begin{pmatrix} a & 0 & -\bar{b} \\ 0 & 1 & 0 \\ \bar{b} & 0 & \bar{a} \end{pmatrix}.
\]

Then there exists a smooth map \(\phi \) which makes the following diagram commutative:

\[
\begin{array}{ccc}
Sp(1) & \xrightarrow{i' \circ c'} & SU(3) \\
\downarrow i & & \downarrow i \\
Sp(2) & \xrightarrow{c'} & SU(4)
\end{array}
\xrightarrow{\phi}
\begin{array}{c}
SU(3)/i'c'(Sp(1)) \\
SU(3)/i'c'(Sp(1)) \\
SU(4)/c'(Sp(2))
\end{array}
\]

As is easily shown, \(\phi \) is injective. Since the isotropy group at \(e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \in S(C^3) \) of the standard action of \(SU(3) \) on \(C^3 \) is \(i'c'(Sp(1)) \), the map \(h' : SU(3)/i'c'(Sp(1)) \rightarrow S(C^3) = S^5 \) defined by

\[
h'(Ai'c'(Sp(1))) = Ae_2 = a_2^2, \quad A = (a_1^2, a_2^2, a_3^2)
\]

is a homeomorphism. Therefore \(\phi \) is an embedding between smooth manifolds homeomorphic to \(S^5 \). Hence \(\phi \) is a homeomorphism.
Let $\psi : SU(3)/i'i'(Sp(1)) \to SU(3)/i'i'(Sp(1))$ be defined by

$$\psi(Ai'i'(Sp(1))) = A \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} i'i'(Sp(1)).$$

The last element is $(-a_1, -a_2, a_3)i'i'(Sp(1))$, where $A = (a_1, a_2, a_3)$. The map ψ is well-defined and makes the following diagram commutative:

$$\xymatrix{ S(C^3) \ar[r]^{L-1} & S(C^3) \ar[d]^{h'} \ar[u]^h \\
SU(3)/i'i'(Sp(1)) \ar[r]_{\psi} \ar[d]_{\phi} & SU(3)/i'i'(Sp(1)) \ar[d]_{\psi} \\
SU(4)/i'(Sp(2)) \ar[r]_{L_{\sqrt{\pi}}} & SU(4)/i'(Sp(2))}

Then $h := h' \circ \phi^{-1} : SU(4)/i'(Sp(2)) \to S^0$ satisfies the desired property. \square

5. Nilpotency of the Group $[Sp(n), Sp(n)]$

Let $c_k(k)$ be a generator of $\pi_{4k-1}(Sp(k)) \cong \mathbb{Z}$ for $k \geq 1$ and write $c_k(m) = i_{k,m} b_k(k)$, where $i_{k,m} : Sp(k) \to Sp(m)$ is the inclusion. Then $c_k(m)$ is a generator of $\pi_{4k-1}(Sp(m)) \cong \mathbb{Z}$, Recall from [2], [13], [17] the following.

Theorem 5.1. (1) The order of $\langle c_k(k+l-1), c_i(k+l-1) \rangle \in \pi_{4k+4l-2}(Sp(k+l-1))$ is

$$\frac{(2k+2l-1)!a(k+l)}{(2k-1)!(2l-1)!a(k)a(l)}$$

where $a(m)$ is 1 or 2 according as m is odd or even.

(2) $H^*(Sp(n); \mathbb{Z}) = \Lambda_\mathbb{Z}(x_3, x_7, \ldots, x_{4n-1})$.

(3) $Sp(n)$ is p-regular if and only if $2n \leq p$.

(4) $Sp(n)$ is quasi p-regular if and only if $n < p$.

Corollary 5.2. For $\max\{k,l\} \leq n \leq k+l-1$ the order of $\langle c_k(n), c_i(n) \rangle \in \pi_{4k+4l-2}(Sp(n))$ is a multiple of $\frac{(2k+2l-1)!a(k+l)}{(2k-1)!(2l-1)!a(k)a(l)}$.

Proof. This follows from Theorem 5.1(1), the equality $i_{n,k+l-1} \langle c_k(n), c_i(n) \rangle = \langle c_k(k+l-1), c_i(k+l-1) \rangle$ and the fact that $\pi_{4k+4l-2}(Sp(n))$ is finite. \square

If $n \geq 4$, then there exists p with $n+1 < p < 2n$. For any such p

$$(5.1) \quad Sp(n) \simeq_p \prod_{i=1}^{n-(p-1)/2} B_{2i-1}(p) \times \prod_{i=n+1-(p-1)/2}^{(p-1)/2} S^{4i-1}$$

The order of $\langle c_{n+1-(p-1)/2}, c_{(p-1)/2} \rangle \in \pi_{4n+2}(Sp(n))$ is a multiple of p by Corollary 5.2. Hence $\text{nii}[Sp(n), Sp(n)] \geq \text{nii}[Sp(n)_{[p]}, Sp(n)_{[p]}] \geq 2$ by Lemma 2.1. Since $Z(\text{Sp}(n))_{[p]} = 0$, we have $\text{nii}[PSp(n), PSp(n)] \geq 2$ by Lemma 2.1, where $PSp(n) = Sp(n)/Z(\text{Sp}(n))$. 8
If n is 2 or 3 and $p = 2n + 1$, then $Sp(n) \simeq_p \prod_{i=1}^{n} S^{4i-1}$ by Theorem 5.1(3) and the order of $(c(n), c(n)) \in \pi_{4n+2}(Sp(n))$ is a multiple of p by Corollary 5.2. Hence $\text{nil}[Sp(n)/H, Sp(n)/H] \geq 2$ for every subgroup H of $Z(\text{Sp}(n)) \cong \mathbb{Z}_2$ by Lemma 2.1.

6. NILPOTENCY OF THE GROUP $[\text{Spin}(n), \text{Spin}(n)]$

By [4], if $n \equiv 0 \pmod{2}$, then we have

$$\text{Spin}(n) \simeq_p \text{Spin}(n/2 - 1) \times S^{m-1}.$$

Consider the case: $n = 4m$ with $m \geq 2$. Choose p such that $2m - 1 < p < 4m - 2$. Then, by (5.1), we have

$$\text{Spin}(4m) \simeq_p \prod_{i=1}^{2m-(p+1)/2} B_{2i-1}(p) \times \prod_{i=2m-(p-1)/2}^{(p-1)/2} S^{4i-1} \times S^{4m-1}$$

of which the last space has $S^{4m-1} \times S^{4m-1}$ as a direct factor, since $2m - (p - 1)/2 \leq m \leq (p - 1)/2$. Let H be a central subgroup of $\text{Spin}(4m)$. Let $\partial_{4m} \in \pi_{4m-1}(SO(4m)) = \pi_{4m-1}(\text{Spin}(4m)/H)$ be the characteristic element of the bundle $SO(4m + 1) \to S^{4m}$. It follows from James [9] (cf. [14], [15]) that the order of $\langle \partial_{4m}, \partial_{4m} \rangle \in \pi_{8m-2}(SO(4m)) = \pi_{8m-2}(\text{Spin}(4m)/H)$ is a multiple of p. Hence $\text{nil}[\text{Spin}(4m)/H, \text{Spin}(4m)/H] \geq 2$ by Lemma 2.1. This completes the proof of Theorem 1.3.

Note that $\text{Spin}(4) = S^3 \times S^3$. Let $G = S^3 \times \cdots \times S^3$ (n-times) with $n \geq 2$ and let H be a central subgroup of G. Since $\pi_* : [G/H, G] = [G/H, S^3] \oplus \cdots \oplus [G/H, S^3] \to [G/H, G/H]$ is an injective homomorphism, we have $\text{nil}[G/H, G/H] \geq \text{nil}[G/H, S^3]$. Since $H_{[3]} = 0$, it follows from Lemma 2.1 that $\text{nil}[G/H, S^3] \geq \text{nil}[G, S^3]_{[3]}$. If $n = 2$, then $\text{nil}[G, S^3]_{[3]} = 2$ by (1.1), p. 176 of [10] and Lemma 2.1 (cf. Proposition 3.1 of [16]), and so $\text{nil}[G/H, G/H] \geq 2$. Assume $n \geq 3$. Let

$$G \xrightarrow{\pi'} S^3 \times S^3 \times S^3 \xrightarrow{p_{i_1} p_{i_2} p_{i_3}} S^3$$

be defined by $\pi'(x_1, \ldots, x_n) = (x_1, x_2, x_3)$ and $p_{i_1} p_{i_2} p_{i_3} = x_i$ for $i = 1, 2, 3$. Since $\pi'^* : [S^3 \times S^3 \times S^3, S^3]_{[3]} \to [G, S^3]_{[3]}$ is an injective homomorphism, we have $\text{nil}[G, S^3]_{[3]} \geq \text{nil}[S^3 \times S^3 \times S^3, S^3]_{[3]}$. Since the order of $[p_{i_1} p_{i_2} p_{i_3}]$ is 3 by §4 of [20] (cf. §3 of [8]), it follows that $\text{nil}[S^3 \times S^3 \times S^3, S^3]_{[3]} \geq 3$. Therefore $\text{nil}[G, S^3]_{[3]} \geq 3$ and so $\text{nil}[G/H, G/H] \geq 3$ as desired. This completes the proof of Proposition 1.5.

REFERENCES

[22] V. Rao, Spin(n) is not homotopy nilpotent for n ≥ 7, Topology 32 (1993), 239–249.

Dartmouth College, Hanover, NH 03755,
Ibaraki University, Mito, Ibaraki 310-8512, Japan,
Dartmouth College, Hanover, NH 03755

E-mail address:
mariorzk@dartmouth.edu,
ooshima@ipc.ibaraki.ac.jp,
jeffrey.strom@dartmouth.edu