Divisible homology classes
in the special linear group of a number field

Dominique Arlettaz and Piotr Zelewski

Introduction

Let F be a number field and $SL(F)$ denote the infinite special linear group over F. The integral homology groups of $SL(F)$ are in general not finitely generated but, it was shown by the first author in Section 2 of [A1] that, for all integers $i \geq 0$, $H_i(SL(F); \mathbb{Z})$ is the direct sum of a free abelian group of finite rank and a torsion group. The next interesting problem consists in understanding the structure of this torsion subgroup.

Recently, G. Banaszak looked at the corresponding question for the algebraic K-theory of number fields: more precisely, he investigated the subgroup $D(i)$ of divisible elements in K_iF (see [B1], Chapter VIII, and [B2], Chapter II). The localization exact sequence in algebraic K-theory (see Section 5 of [Q1], Theorem 8 of [Q3] and Théorème 1 of [S])

$$
\cdots \to K_iO \stackrel{r_*}{\to} K_iF \to \bigoplus_{m} K_{i-1}(O/m) \to \cdots,
$$

where O is the ring of algebraic integers in F, r_* the homomorphism induced by the inclusion $r : O \hookrightarrow F$, and where m runs over the set of maximal ideals of O, implies that $D(i)$ is a subgroup of the image of r_*, since $K_{i-1}(O/m)$ is trivial if i is odd and finite cyclic if i is even; moreover, it follows from the finite generation of the groups K_iO for $i \geq 0$ [Q2] that

$$
D(i) = 0 \text{ if } i \text{ is odd and } D(i) \text{ is a finite group if } i \text{ is even.}
$$

For any prime number ℓ, let $D(i)_{\ell}$ denote the ℓ-torsion subgroup of $D(i)$ (in other words, the subgroup of ℓ-divisible ℓ-torsion elements in K_iF). For $i = 2n$, n odd, Banaszak

The second author wishes to thank the Swiss National Science Foundation and the Leverhulme Foundation for financial support while this research was being carried out.
deduced that $D(2n)_{\ell}$ is in general non-trivial; subsequently, together with Kolster, he obtained the following description (see [B2], Theorem 3): if F is totally real, n an odd positive integer and ℓ an odd prime, the order of $D(2n)_{\ell}$ is exactly given by the ℓ-adic absolute value of
\[
\frac{w_{n+1}(F) \zeta_F(-n)}{\prod_{\nu|\ell} w_n(F_{\nu})},
\]
where $\zeta_F(-)$ is the Dedekind zeta function of F, $w_n(k)$ the biggest integer s such that the exponent of the galois group $\text{Gal}(k(\mu_s)/k)$ divides n for a field k (here μ_s is an s-th primitive root of unity), and F_{ν} the completion of F at ν. For instance, if F is the field of rationals \mathbb{Q}, n an odd integer and ℓ an odd prime, the order of $D(2n)_{\ell}$ is equal to the ℓ-adic absolute value of the numerator of $\frac{B_{n+1}}{n+1}$, where B_{n+1} is the $(n+1)$-st Bernoulli number. Notice that the knowledge of $D(2n)$ is of particular interest since it is related to the Lichtenbaum-Quillen conjecture (see [B2], Section II.2) and to étale K-theory (see [BZ]).

The purpose of the present paper is to study the divisible elements in homology of the infinite special linear group of a number field. Denote by $D(i)$ the subgroup of divisible elements in $H_i(SL(F);\mathbb{Z})$, and for a prime ℓ, by $D(i)_{\ell}$ the ℓ-torsion subgroup of $D(i)$ (observe that $D(i)$ is a torsion group because of the result of [A1] mentioned above). In the first section (see Theorem 1.1), we prove that

$D(i)$ is a finite group for any $i \geq 0$.

In Section 2, we use the fact that the group $SL(F)$ has the same homology as the simply connected infinite loop space $BSL(F)^+$ obtained by performing the plus construction on the classifying space of $SL(F)$ and consider the Hurewicz homomorphism

$h_i : K_i F \cong \pi_i BSL(F)^+ \to H_i(BSL(F)^+;\mathbb{Z}) \cong H_i(SL(F);\mathbb{Z})$

for $i \geq 2$. We concentrate our attention to its restriction $h_i : D(i) \to D(i)$ for $i = 2n$ and show the following assertion (see Corollary 2.5):

For any $n \geq 1$, $h_{2n} : D(2n)_{\ell} \to D(2n)_{\ell}$ is a split injection if $\ell > n$.

We also observe that, in general, there are elements in $D(i)_{\ell}$ which do not belong to the image of $h_i : K_i F \to H_i(SL(F);\mathbb{Z})$; for example, $D(i)_{\ell}$ may be non-trivial even if i is odd or if $i = 2n$ with n even. The last section is devoted to the following vanishing result (see Theorem 3.1):
If N is a positive integer and ℓ a prime number $> N$ such that $D(2n)_{\ell} = 0$ for $1 \leq n \leq N$, then $D(i)_{\ell} = 0$ for $1 \leq i \leq 2N$.

Let us finally mention that the structure of the integral homology groups of the infinite general linear group $GL(F)$ may be deduced from the knowledge of the integral homology of $SL(F)$ by the Künneth formula, because of the homotopy equivalence $BGL(F)^+ \simeq BSL(F)^+ \times BF^\times$ which follows from the fact that $BSL(F)^+$ is the universal cover of $BGL(F)^+$ (see [A1], proof of Corollary 9).

1. A finiteness theorem

The first result on the structure of the integral homology groups of $SL(F)$ is given by Theorem 7 of [A1]: for any $i \geq 0$, $H_i(SL(F); \mathbb{Z})$ is the direct sum of a free abelian group of finite rank and a torsion group. It has the following consequence on the integral cohomology of $SL(F)$: for any $i \geq 0$, $H^i(SL(F); \mathbb{Z})$ contains no divisible elements except 0 (see [A1], Corollary 8). The purpose of this section is to investigate the subgroup $D(i)$ of divisible elements in $H_i(SL(F); \mathbb{Z})$.

Theorem 1.1. For any $i \geq 0$, $D(i)$ is a finite group.

Proof. According to [Q3], Theorem 4 or [Q1], Section 7, Proposition 3.2, there is a fibration

$$\prod_{m} BQP(O/m) \longrightarrow BQP(O) \longrightarrow BQP(F),$$

where $BQP(A)$ denotes the classifying space of the Q-construction over the category of finitely generated projective A-modules for a ring A, \prod the weak product (i.e., the direct limit of cartesian products with finitely many factors), and where m runs over the set of maximal ideals of O. By looping its base space, we obtain the fibration (see [Q3], Theorem 1)

$$\Omega BQP(F) \simeq BGL(F)^+ \times K_0 F \overset{g}{\longrightarrow} \prod_{m} BQP(O/m) \longrightarrow BQP(O).$$

Since $K_i O \simeq \pi_{i+1} BQP(O)$ is finitely generated for all $i \geq 0$ [Q2], the homotopy exact sequence of this fibration shows that, for all $i \geq 1$, the map g induces a C-isomorphism.
$$g_* : K_iF \to \pi_i(\prod_m BQP(O/m)),$$ where \mathcal{C} is the Serre class of all finitely generated abelian groups. But, g may be lifted to a map on the universal covers:

$$f : BSL(F)^+ \simeq B\mathcal{G}L(F)^+ \to \prod_m B\widehat{Q}P(O/m),$$

which induces again a \mathcal{C}-isomorphism on π_i for all $i \geq 2$. Consequently, the induced homomorphism $f_i : H_i(\mathcal{H})(F)^+; \mathbb{Z}) \to H_i(\prod_m B\widehat{Q}P(O/m); \mathbb{Z})$ is also a \mathcal{C}-isomorphism for $i \geq 2$. But by the Künneth formula, $H_i(\prod_m B\widehat{Q}P(O/m); \mathbb{Z})$ is a direct sum of finitely generated abelian groups, since the integral homology groups of $\widehat{Q}P(O/m)$ are finitely generated for all m, and has therefore no divisible elements except 0. This implies that $\overline{D}(i)$ is contained in the kernel of f_i, hence, it is finitely generated. Finally, $\overline{D}(i)$ is finite because one deduces clearly from the structure of $H_i(SL(F); \mathbb{Z})$ that $\overline{D}(i)$ is a torsion group.

We shall check that $\overline{D}(i)$ is in general non-trivial (see Corollary 2.6).

Remark 1.2. The same argument proves that the subgroup of divisible elements in $H_i(\Omega^s BSL(F)^+; \mathbb{Z})$ is also finite for all $i \geq 0$ and $s \geq 0$.

2. The Hurewicz homomorphism

Denote by X_F the 1-connected Ω-spectrum whose 0-th space is the infinite loop space $BSL(F)^+$: the homotopy groups of X_F are the K-groups of F in dimensions ≥ 2. This spectrum is of interest for algebraic K-theory because of the following result.

Theorem 2.1. For $i \geq 2$, the Hurewicz homomorphism $\tilde{h}_i : K_i(F; \mathbb{Z}(\ell)) \to H_i(X_F; \mathbb{Z}(\ell))$ is an isomorphism if ℓ is a prime number $> \frac{i+1}{2}$.

Proof. Since the spectrum X_F is 1-connected, its Postnikov k-invariants $k^{i+1}(X_F)$ are cohomology classes of finite order ρ_i for $i \geq 3$, and ρ_i is only divisible by primes $p \leq \frac{i+1}{2}$ (see [A3], Theorem 1.5). Now, let us write $X_F[i]$ for the i-th Postnikov section of X_F (i.e., $X_F[i]$ is a spectrum with $\pi_jX_F[i] = 0$ for $j > i$, $\pi_jX_F \cong \pi_jX_F[i]$ for $j \leq i$), and for any prime number ℓ, $(X_F[i])_{(\ell)}$ for its localization at ℓ, which has the property that $\pi_j(X_F[i])_{(\ell)} \cong (K_jF)_{(\ell)} \cong K_j(F; \mathbb{Z}(\ell))$ for $j \leq i$. If $\ell > \frac{i+1}{2}$, all k-invariants of
(\(X_F[i]\))(\(\ell\)) are trivial and \((X_F[i])(\ell)\) is a wedge of Eilenberg-MacLane spectra:

\[(X_F[i])(\ell) \simeq \bigvee_{j=2}^{i} \Sigma^j H(K_j(F; \mathbb{Z}(\ell))) \]

(for any abelian group \(G\), \(H(G)\) denotes the Eilenberg-MacLane spectrum having all homotopy groups trivial except for \(G\) in dimension 0). Then, it is easy to compute

\[H_i(X_F; \mathbb{Z}(\ell)) \cong H_i(X_F[i](\ell); \mathbb{Z}) \cong \bigoplus_{j=2}^{i} H_i(\Sigma^j H(K_j(F; \mathbb{Z}(\ell))); \mathbb{Z}) \cdot \]

But it follows from [C], Théorème 2 or [A3], Proposition 1.3 that \(H_i(\Sigma^j H(K_j(F; \mathbb{Z}(\ell))); \mathbb{Z})\) is trivial if \(j < i < j + 2\ell - 2\). Consequently, the condition \(i < 2\ell - 1\) produces the desired assertion since \(H_i(X_F; \mathbb{Z}(\ell)) \cong H_i(\Sigma^i H(K_i(F; \mathbb{Z}(\ell)), i); \mathbb{Z}) \cong K_i(F; \mathbb{Z}(\ell))\).

Remark 2.2. From the theorem, it is true that \(K_i F\) and \(H_i(X_F; \mathbb{Z})\) have isomorphic subgroups of \(\ell\)-torsion divisible elements if \(\ell \geq \frac{i+1}{2}\). We shall prove in another paper that for any bounded below spectrum, the cokernel of the Hurewicz homomorphism is a group of finite exponent. Consequently, all divisible elements in \(H_i(X_F; \mathbb{Z})\) belong to the image of the Hurewicz homomorphism \(\tilde{h}_i : K_i F \to H_i(X_F; \mathbb{Z})\) (but, may be, they are images of elements which are not divisible in \(K_i F\)).

Remark 2.3. If we look at integers \(i \geq 1\), we may also consider the Hurewicz homomorphism \(K_i(F; \mathbb{Z}(p)) \to H_i(Y_F; \mathbb{Z}(p))\), where \(Y_F\) denotes the 0-connected \(\Omega\)-spectrum whose 0-th space is \(BGL(F)^+\): then, the conclusion of Theorem 2.1 holds for primes \(\ell > \frac{i}{2} + 1\).

It is also useful to consider the Hurewicz homomorphism on the space level

\[h_i : K_i(F; \mathbb{Z}(\ell)) \longrightarrow H_i(\text{BSL}(F)^+; \mathbb{Z}(\ell)) \]

for \(i \geq 2\), and the commutative diagram

\[
\begin{array}{ccc}
K_i(F; \mathbb{Z}(\ell)) \cong \pi_i(\text{BSL}(F)^+; \mathbb{Z}(\ell)) & \xrightarrow{h_i} & H_i(\text{BSL}(F)^+; \mathbb{Z}(\ell)) \cong H_i(\text{SL}(F); \mathbb{Z}(\ell)) \\
\downarrow \cong & & \downarrow \sigma \\
K_i(F; \mathbb{Z}(\ell)) \cong \pi_i(X_F; \mathbb{Z}(\ell)) & \xrightarrow{\tilde{h}_i} & H_i(X_F; \mathbb{Z}(\ell))
\end{array}
\]
where \(\sigma \) denotes the iterated homology suspension. Thus, Theorem 2.1 has the following immediate consequence (see also [A2], Section 2).

Corollary 2.4. If \(i \) is a positive integer and \(\ell \) a prime number \(> \frac{i+1}{2} \), then the Hurewicz homomorphism \(h_i : K_i(F; \mathbb{Z}(\ell)) \to H_i(SL(F); \mathbb{Z}(\ell)) \) is a split injection.

Since we know that \(D(i) = 0 \) for odd \(i \)'s, let us consider \(i = 2n \) and obtain the following splitting result.

Corollary 2.5. If \(n \) is a positive integer and \(\ell \) a prime number \(> n \), then the Hurewicz homomorphism \(h_{2n} : D(2n)(\ell) \to \overline{D}(2n)(\ell) \) is a split injection.

Of course, if \(F \) is totally real, \(i = 2n \) an even integer with \(n \) odd and \(\ell \) a prime \(> n \), then Banaszak’s formula for the order of \(D(2n)(\ell) \) asserts that \(\overline{D}(2n)(\ell) \) is non-trivial for suitable \(n \) and \(\ell \). If \(F = \mathbb{Q} \) for instance, \(D(2n)(\ell) \) is non-trivial if \(\ell \) is an irregular prime and \(n \) an odd integer such that \(\ell \) divides the numerator of \(\frac{B_{n+1}}{n+1} \). Actually, it turns out that, in general, \(\overline{D}(i)(\ell) \) is bigger than \(D(i)(\ell) \) (\(\ell > \frac{i+1}{2} \)).

Theorem 2.6. Let \(F \) be a totally real number field, \(i \) a positive integer and \(\ell \) a prime number \(\geq \frac{i+1}{2} \). There are non-trivial \(\ell \)-torsion divisible elements in \(H_i(SL(F); \mathbb{Z}) \) which do not belong to the image of the Hurewicz homomorphism \(h_i : K_iF \to H_i(SL(F); \mathbb{Z}) \). In particular, \(H_i(SL(F); \mathbb{Z}) \) may contain non-trivial divisible elements even if \(i \) is odd or if \(i = 2n \) with \(n \) even.

Proof. Since \(\ell \) is a prime \(> \frac{i+1}{2} \), all \(k \)-invariants of the localized \(i \)-th Postnikov section \((BSL(F)^+[i])(\ell) \) of \(BSL(F)^+ \) are trivial since this is the case for the spectrum \((X_F[i])(\ell) \). Therefore, \((BSL(F)^+[i])(\ell) \) is a product of Eilenberg-MacLane spaces:

\[
(BSL(F)^+[i])(\ell) \simeq \prod_{j=2}^{i} K(K_j(F; \mathbb{Z}(\ell)), j)
\]

This homotopy equivalence and the Künneth formula provide a calculation of

\[
H_i(SL(F); \mathbb{Z}(\ell)) \cong H_i((BSL(F)^+[i])(\ell); \mathbb{Z}) \cong H_i(\prod_{j=2}^{i} K(K_j(F; \mathbb{Z}(\ell)), j); \mathbb{Z})
\]
this homology group has not only $H_i(K_i(F; \mathbb{Z}_(\ell)), i; \mathbb{Z}) \cong K_i(F; \mathbb{Z}_(\ell))$ as direct summand, but also mixed terms, for instance of the form

$$K_{2m}(F; \mathbb{Z}_(\ell)) \otimes \left(K_{j_1}(F; \mathbb{Z}_(\ell)) \otimes K_{j_2}(F; \mathbb{Z}_(\ell)) \otimes \cdots \otimes K_{j_s}(F; \mathbb{Z}_(\ell)) \right),$$

where $2m + j_1 + j_2 + \cdots + j_s = i$; however, the right hand side of this tensor product may include a free $\mathbb{Z}_(\ell)$-module if j_1, j_2, \ldots, j_s are $\equiv 1 \pmod{4}$ and ≥ 5 (see [Bo]). If this occurs for m odd, then all elements of $D(2m)_{\ell}$ are divisible in the above mixed term. Consequently, $D(i)_{\ell}$ contains not only $D(i)_{\ell}$, but also $D(2m)_{\ell}$ for suitable choices of $m \leq \frac{i-5}{2}$. This may happen even if i is odd or if $i = 2n$ with n even.

Example 2.7. Take $F = \mathbb{Q}$ and $\ell = 691$. It is known that $D(22)_{691}$ is non-trivial (see [B1], Section VIII.3) and that $K_j\mathbb{Q}$/torsion is infinite cyclic if $j \equiv 1 \pmod{5}$ and ≥ 5. The argument introduced in the previous proof exhibits for instance non-trivial elements in $D(27)_{691}$, in $D(36)_{691}/D(36)_{691}$, and in $D(66)_{691}/D(66)_{691}$.

It is easy to deduce from Theorem 2.1 that the divisible elements detected by Theorem 2.6 vanish under σ.

Corollary 2.8. If i is a positive integer and ℓ a prime number $> \frac{i+1}{2}$, then the iterated homology suspension $\sigma : H_i(SL(F); \mathbb{Z}_(\ell)) \to H_i(X_F; \mathbb{Z}_(\ell))$ satisfies $\sigma(D(i)_{\ell}/D(i)_{\ell}) = 0$.

Remark 2.9. As we mentioned in the introduction, all divisible elements in $K_i\mathbb{F}$ belong to the image of the homomorphism $r_* : K_i\mathbb{O} \to K_i\mathbb{F}$ induced by the inclusion $r : \mathbb{O} \hookrightarrow \mathbb{F}$. If i is a positive integer and ℓ a prime $> \frac{i+1}{2}$, it follows obviously from Theorem 2.1 that the ℓ-torsion divisible elements in $H_i(X_F; \mathbb{Z})$ are also elements of the image of the induced homomorphism $r_* : H_i(X_O; \mathbb{Z}) \to H_i(X_F; \mathbb{Z})$. We do not know the answer of the following question: is $D(i)_{\ell} \subseteq \sigma(D(i)_{\ell}/D(i)_{\ell})$ contained in the image of $r_* : H_i(SL(O); \mathbb{Z}) \to H_i(SL(F); \mathbb{Z})$?

3. A vanishing theorem

The study of the Serre spectral sequence of the fibration

$$\prod_m BQP(O/m) \longrightarrow BQP(O) \longrightarrow BQP(F)$$

(introduced in Section 1) shows that $H_i(SL(F); \mathbb{Z})$ contains in general a lot of ℓ-torsion
elements for all primes \(\ell \). The goal of this section is to prove that for certain choices of the integer \(i \) and the prime \(\ell \), the group \(H_i(SL(F);\mathbb{Z}) \) has no non-trivial \(\ell \)-torsion divisible elements.

Theorem 3.1. If \(N \) is a positive integer and \(\ell \) a prime number \(> N \) with the property that \(D(2n)_{\ell} = 0 \) for all positive \(n \leq N \), then \(\overline{D}(i)_{\ell} = 0 \) for all positive \(i \leq 2N \).

Proof. As in the proof of Theorem 2.6, the assumption \(\ell > N \) provides a homotopy equivalence

\[
(BSL(F)^+[2N])_{(\ell)} \cong \prod_{j=2}^{2N} K(K_j(F;\mathbb{Z}(\ell)), j).
\]

According to [B2], Section II.1, Corollary 1, the vanishing of \(D(2n)_{\ell} \) implies the splitting

\[
K_{2n}(F;\mathbb{Z}(\ell)) \cong K_{2n}(O;\mathbb{Z}(\ell)) \oplus \left(\bigoplus_m K_{2n-1}(O/m;\mathbb{Z}(\ell)) \right).
\]

Therefore, \(K_{2n}(F;\mathbb{Z}(\ell)) \) is a direct sum of finitely generated \(\mathbb{Z}(\ell) \)-modules and the same is true for \(H_k(K(K_{2n}(F;\mathbb{Z}(\ell)), 2n);\mathbb{Z}) \), for all \(k \geq 1 \) (\(2 \leq 2n \leq 2N \)). On the other hand, \(K_j(F;\mathbb{Z}(\ell)) \) is finitely generated if \(j \) is odd because of the localization exact sequence. We may finally conclude by the Künneth formula that, for \(i \leq 2N \),

\[
H_i(SL(F);\mathbb{Z}(\ell)) \cong H_i((BSL(F)^+[2N])_{(\ell)};\mathbb{Z}) \cong H_i(\prod_{j=2}^{2N} K(K_j(F;\mathbb{Z}(\ell)), j);\mathbb{Z})
\]

is again a direct sum of finitely generated \(\mathbb{Z}(\ell) \)-modules, and hence has no non-trivial \(\ell \)-torsion divisible elements, since the \(\ell \)-torsion subgroup of any finitely generated \(\mathbb{Z}(\ell) \)-module is finite. In other words, we get \(\overline{D}(i)_{\ell} = 0 \) for \(i \leq 2N \).

Remark 3.2. It is shown in [BG] that, for \(F = \mathbb{Q} \), the Kummer-Vandiver conjecture [W, p.157] holds if and only if \(D(2n)_{\ell} = 0 \) for \(n \) even, \(\ell \) odd. It is known (loc.cit.) that this conjecture holds for \(\ell < 125'000 \). Thus, the formula in the introduction for the order of \(D(2n)_{\ell} \), for \(n \) odd, makes it easy to check the hypothesis of Theorem 3.1 for \(\ell < 125'000 \) and \(F = \mathbb{Q} \).
References

