The Dyer-Lashof Algebra in Bordism

Terrence Bisson Andrè Joyal
bisson@canisius.edu joyal@math.ugam.ca

We present a theory of Dyer-Lashof operations in unoriented bordism (the canonical splitting \(N_*(X) \simeq N_* \otimes H_*(X)\), where \(N_*(\)\) is unoriented bordism and \(H_*(\)\) is homology mod 2, does not respect these operations). For any finite covering space we define a “polynomial functor” from the category of topological spaces to itself. If the covering space is a closed manifold we obtain an operation defined on the bordism of any \(E_\infty\)-space. A certain sequence of operations called squaring operations are defined from two-fold coverings; they satisfy the Cartan formula and also a generalization of the Adem relations that is formulated by using Lubin’s theory of isogenies of formal group laws. We call a ring equipped with such a sequence of squaring operations a \(D\)-ring, and observe that the bordism ring of any free \(E_\infty\)-space is free as a \(D\)-ring. In particular, the bordism ring of finite covering manifolds is the free \(D\)-ring on one generator. In a second compte-rendu we discuss the (Nishida) relations between the Landweber-Novikov and the Dyer-Lashof operations, and show how to represent the Dyer-Lashof operations in terms of their actions on the characteristic numbers of manifolds.

1. The algebra of covering manifolds.

We begin with the observation that a covering space \(p: T \to B\) can be used to define a functor \(X \mapsto p(X)\) from the category of topological spaces to itself, where

\[
p(X) = \{(u, b) \mid b \in B, \ u : p^{-1}(b) \to X\}.
\]

Then \(p(X)\) is the total space of a bundle over \(B\) with fibers \(X^{p^{-1}(b)}\), and any continuous map \(f : X \to Y\) induces a continuous map \(p(f) : p(X) \to p(Y)\). We shall say that \(p(\)\) is a polynomial functor. For functors \(F\) and \(G\) from the category of topological spaces to itself, we have functors \(F + G\), \(F \times G\) and \(F \circ G\) given by \((F + G)(X) = F(X) + G(X)\), \((F \times G)(X) = F(X) \times G(X)\), and \((F \circ G)(X) = F(G(X))\). Polynomial functors happen to be closed under these operations, and we obtain well-defined operations \(p + q\), \(p \times q\) and \(p \circ q\) on coverings. These operations satisfy the kinds of identities that one should expect for an algebra of polynomials.

We define the derivative \(p'\) of a covering \(p : T \to B\) to be the covering whose base space is \(T\) and whose fiber over \(t \in T\) is the set \(p^{-1}(p(t)) - \{t\}\). The rules of differential calculus apply: \((p + q)' = p' + q'\), \((p \times q)' = p' \times q + p \times q'\) and \((p \circ q)' = (p' \circ q) \times q'\). If we observe that the total space of \(p\) is \(p'(1)\) (where 1 denotes a single point) and that its base space is \(p(1)\) the formula \((p \times q)'(1) = p'(1) \times q(1) + p(1) \times q'(1)\) expresses the total space of \((p \times q)\) in terms of the total and based spaces of \(p\) and \(q\). Similarly for the formula \((p \circ q)'(1) = p'(q(1)) \times q'(1)\).

Remark 1: There is a parallel between this algebra of covering spaces and the algebra of combinatorial species developed in [9] and [10].
Remark 2: By using the Euler-Poincare characteristic one can associate a polynomial $\chi(p)$ to any covering p of a finite complex. We have $\chi(p + q) = \chi(p) + \chi(q)$, $\chi(p \times q) = \chi(p) \times \chi(q)$, $\chi(p \circ q) = \chi(p) \circ \chi(q)$, and $\chi(p') = \chi(p)$.

Remark 3: It is also possible to define various kinds of higher differential operators on coverings. For example, the group Σ_2 acts on any second derivative p'' by permuting the order of differentiation, and we can define

$$\frac{1}{2!} \frac{d^2 p}{dx^2} = \frac{p''}{\Sigma_2}.$$

Higher divided derivatives can be handled similarly.

Remark 4: Polynomial functors of n variables are easily defined. They are obtained from n-tuples (p_1, \ldots, p_n) where $p_i : T_i \to B$ is a finite covering for every i.

Let us now consider coverings of smooth compact manifolds. We say that two coverings of closed manifolds are cobordant if together they form the boundary of a covering. Let $N_*\Sigma$ denote the set of cobordism classes of closed coverings. Let $N_d\Sigma_n$ denote the set of cobordism classes of degree n (i.e. n-fold) coverings over closed manifolds of dimension d.

Proposition 1. The operations of sum $+$, product \times, and composition \circ are compatible with the cobordism relation on closed coverings. They define on $N_*\Sigma$ the structure of a commutative \mathbb{Z}_2 algebra, graded by dimension.

Notice that if $p \in N_k\Sigma_m$ and $q \in N_r\Sigma_n$ then $p \circ q \in N_{mr+k}\Sigma_{mn}$. This defines in particular an action of $N_*\Sigma$ on $N_*\Sigma_0 = N_*$. More generally, let us see that $N_*\Sigma$ acts on the bordism ring of any E_∞-space.

Recall (see [1], [18]) that an E_∞-space X has structure maps $E\Sigma_n \times \Sigma_n X^n \to X$ for each n. These structure maps give rise to structure maps $p(X) \to X$ for every degree n covering space $p : T \to B$. To see this it suffices to express p as a pull back of the tautological n-fold covering u_n of $B\Sigma_n$ along some map $B \to B\Sigma_n$. This furnishes a map $p(X) \to u_n(X) = E\Sigma_n \times \Sigma_n X^n$ and the structure map $p(X) \to X$ is then obtained by composing with $u_n(X) \to X$.

Recall (see [6] for instance) that an element of N_*X is the bordism class of a pair (M, f) where $f : M \to X$ and M is a compact manifold; then $p(M)$ is a compact manifold and the structure map for X gives $p(M) \to p(X) \to X$, representing an element in N_*X.

Proposition 2. Let X be an E_∞-space. Each covering of degree n and dimension d defines an operation $N_m X \to N_{nm+d} X$. Cobordant covering spaces give the same operation. Moreover, for double coverings these operations are additive.

It should be noted that tom Dieck [7] and Alliston [3] develop bordism Dyer-Lashof operations which agree with ours; the relationship will be clearer after section 2.

Example: The classifying space for finite coverings is $B\Sigma_*$ the disjoint union of the classifying spaces of the symmetric groups $B\Sigma_n$. Then $N_*B\Sigma_* = N_*\Sigma$ and $B\Sigma_*$ has a natural E_∞-space structure defined from disjoint sum. The covering operations on $N_*B\Sigma_*$ correspond to composition of coverings.
Remark: It is a classical result [19], [8], [12] that the inclusion \(i : \Sigma_{n-1} \subset \Sigma_n \) defines a split monomorphism \(i_* : N_*\Sigma_{n-1} \to N_*\Sigma_n \). In our setting \(i_* \) is the map \(p \mapsto x \times p \). It is easy to see, by applying the rules of differential calculus, that the map

\[
q \mapsto dq \over dx + x \frac{1}{2!} \frac{d^2 q}{dx^2} + x^2 \frac{1}{3!} \frac{d^3 q}{dx^3} + \cdots
\]

is a splitting [11].

For any space \(X \) let \(\epsilon : N_*(X) \to H_*(X) \) denote the Thom reduction, where \(H_* \) is mod 2 homology. If \((M, f) \in N_*(X) \) we have \(\epsilon(M, f) = f_*(\mu_M) \) where \(\mu_M \) denotes the fundamental homology class of \(M \). If \(X \) is an \(E_\infty \)-space then each covering of degree \(n \) and dimension \(d \) defines an operation \(H_mX \to H_{nm+d}X \) which is the Thom reduction of the corresponding operation in bordism.

We now describe the sequence of cobordism class of double coverings that leads to the concept of \(D \)-rings. It is a classical result that \(N_*(RP^\infty) = N_*[[t]] \). Let \(q_k \) in \(N_*BS_2 = N_*(RP^\infty) \) be represented by the canonical inclusion \(RP^k \hookrightarrow RP^\infty \). The sequence \(q_0, q_1, \ldots \) is a basis of the \(N_* \)-module \(N_*(RP^\infty) \). The Kronecker pairing \(N_*^*(RP^\infty) \times N_*(RP^\infty) \to N_* \) defines an exact duality between \(N_*^*(RP^\infty) \) and \(N_*(RP^\infty) \). Let \(d_0, d_1, \ldots \) be the basis dual to the basis \(t^0, t^1, t^2, \ldots \) under the Kronecker pairing. The relation between the two bases of \(N_*(RP^\infty) \) can be expressed as an equality of generating series

\[
\left(\sum_{i \geq 0} [RP^i] t^i \right) \left(\sum_{k \geq 0} d_k x^k \right) = \left(\sum_{n \geq 0} q_n x^n \right),
\]

where \(x \) is a formal indeterminate. We have \(d_0 = q_0 \), and \(d_1 = q_1 \) since \([RP^0] = 1 \) and \([RP^1] = 0 \). It turns out (see [2] for instance) that \(d_n \) can be represented by the Milnor hypersurface \(H(n, 1) \hookrightarrow RP^n \times RP^1 \to RP^n \). The coverings \(d_n \) and \(q_n \) give operations which are distinct in bordism but agree in mod 2 homology.

2. \(D \)-rings and Dyer-Lashof operations

Recall that a formal group law over a commutative ring \(R \) is a formal power series \(F(x, y) \in R[[x, y]] \) which satisfies identities corresponding to associativity and unit; (see Quillen [21] or Lazard [13] for instance). We say that a formal group law \(F \) has order two if \(F(x, x) = 0 \).

The Lazard ring (for formal group laws of order two) is the commutative ring with generators \(a_{i, j} \) and relations making \(F(x, y) = \sum a_{i, j} x^i y^j \) a formal group law of order two. Let us temporarily denote this Lazard ring by \(L \). Then for any ring \(R \) and any formal group law \(G(x, y) \in R[[x, y]] \) of order two there is a unique ring homomorphism \(\phi : L \to R \) such that \((\phi F)(x, y) = G(x, y) \). Quillen [21] showed that \(L \) is naturally isomorphic to \(N_* = N_*(pt) \). This provides a beautiful interpretation of Thom’s original calculation of the unoriented cobordism ring.

Let \(R \) be a commutative ring and let \(F \in R[[x, y]] \) be a formal group law of order two (this implies that \(R \) is a \(\mathbb{Z}_2 \)-algebra). According to Lubin [14] there exists a unique formal group law \(F_t \) defined over \(R[[t]] \) such that \(h_t(x) = xF(x, t) \) is a morphism \(h_t : F \to F_t \). The
kernel of h_t is $\{0, t\}$, which is a group under the F-addition $x + F y = F(x, y)$. We will refer to F_t as the Lubin quotient of F by $\{0, t\}$ and to h_t as the isogeny. The construction can be iterated and a Lubin quotient $F_{t,s}$ of F_t can be obtained by further killing $h_t(s) \in R[[t, s]]$. The composite isogeny $F \to F_t \to F_{t,s}$ is

$$h_{t,s}(x) = h_t(x)F_t(h_t(x), h_t(s)) = xF(x,t)F(x, s)F(x, F(s, t))$$

Its kernel consists of $\{0, t, s, F(s, t)\}$, which is an elementary abelian 2-group under the F-addition. By doing the construction in a different order we obtain $F_{s,t}$ but it turns out that $F_{t,s} = F_{s,t}$.

Definition: A D-ring is a commutative ring R together with a formal group law of order two F defined over R and a ring homomorphism $D_t : R \to R[[t]]$ called the total square, satisfying the following conditions:

i) $D_0(a) = a^2$ for every a in R;

ii) $D_t(F) = F_t$;

iii) $D_t \circ D_s$ is symmetric in t and s. Here we have extended $D_t : R \to R[[t]]$ to $D_t : R[[s]] \to R[[s, t]]$ by defining $D_t(s) = h_t(s) = sF(s, t)$.

A morphism of D-rings is a ring homomorphism which preserves the formal group laws and the total squares. A D-ring is also an algebra over the Lazard ring N_*, and a morphism of D-rings is a morphism of N_*-algebras.

A D-ring is graded if R is graded and F is homogeneous in grade -1 and $D_t(x)$ has grading $2i$ in $R[[t]]$ for each element of grading i in R (where t and s have grading -1).

Example: The Lazard ring N_* has a unique ring homomorphism $D_t : N_* \to N_*[[t]]$ such that $D_t(F) = F_t$, and this defines a D-structure on N_*. Thus N_* is initial in the category of D-rings.

Proposition. If X is an E_∞-space then N_*X is a commutative ring under Pontryagin product; it is also an N_*-algebra. If d_0, d_1, \ldots are the double coverings described in the previous section then the total squaring

$$D_t(x) = \sum_n d_n(x)t^n$$

gives a D-structure on N_*X.

Example: BO_*, the disjoint union of the classifying spaces of the orthogonal groups $BO(n)$, is an E_∞-space with $N_*BO_* = N_*[b_0, b_1, \ldots]$. It forms a D-ring with F given by the cobordism formal group law over N_* and with D_t determined by

$$D_t(b)(xF(x, t)) = b(x)b(F(x, t))$$

where $b(x) = \sum b_ix^i$.

We shall refer to any D-ring R with $F = (+)$ as a Q-ring. The mod 2 homology of an E_∞-space E is a Q-ring, and the Thom reduction $\epsilon : N_*(E) \to H_*(E)$ is a morphism of D-rings.
Proposition. A commutative ring R is a Q-ring if and only if it has a sequence of additive operations $q_n : R \to R$ which satisfy the following three conditions:

i) Squaring: $q_0(x) = x^2$ for all $x \in R$.

ii) Cartan formula: $q_n(xy) = \sum_{i+j=n} q_i(x)q_j(y)$ for all $x, y \in R$.

iii) Adem relations: $q_m(q_n(x)) = \sum_i (i-\frac{n-1}{2}) q_{m+2n-2i}(q_i(x))$ for all $x \in R$.

In the graded case, $\text{grade}(q_n(x)) = 2 \cdot \text{grade}(x) + n$.

This is exactly an action of the classical Dyer-Lashof algebra on R. This idea of writing Adem relations via generating series is suggested by [4] and by Bullett and MacDonald [5].

See [17], [15], [16] for background on Dyer-Lashof operations.

Example: The Q-structure on $H_*BO_* = \mathbb{Z}_2[b_0, b_1, \ldots]$ is characterized by

$$Q_t(b)(x(t)) = b(x)b(x+t)$$

where $b(x) = \sum b_i x^i$. This expresses via generating series a calculation of Priddy’s in [20].

Notice that if A and B are Q-rings then $A \otimes_{\mathbb{Z}_2} B = A \otimes \mathbb{Z}_2 B = A \otimes B$ is a Q-ring. Let $Q\langle M \rangle$ denote the free Q-ring generated by a \mathbb{Z}_2-vector space M. If M has a comultiplication, then $Q\langle M \rangle$ has a comultiplication extending it which is a morphism of Q-rings.

Recall that $E_{\infty}(X)$ is the free E_{∞}-space generated by X (see [18] or [1] for background). The following is a classical result:

Theorem 1. (May [17]) For any space X the canonical map

$$Q\langle H_*X \rangle \to H_*E_{\infty}(X)$$

is an isomorphism which preserves the comultiplication. In particular, $H_*B\Sigma_* = Q\langle x \rangle$ is the free Q-ring on one generator.

If A and B are D-rings then $A \otimes_{N_*} B$ is naturally a D-ring. Let us denote $D\langle M \rangle$ denote the D-ring freely generated by an N_*-module M. If M is a coalgebra in the category of N_*-modules, then $D\langle M \rangle$ has a comultiplication.

Theorem 2. The bordism of an E_{∞}-space is an D-ring. Moreover, for any space X the canonical map

$$D\langle N_*X \rangle \to N_*E_{\infty}(X)$$

is an isomorphism which preserves the comultiplication. In particular, $N_*\Sigma = N_*(B\Sigma) = D\langle x \rangle$ is the free D-ring on one generator.

Thus, both $D\langle x \rangle$ and $N_*\Sigma$ are algebras equipped with operations of substitution; the former because it is the set of unary operations in the theory of D-rings and the latter because we have defined a substitution operation among coverings of manifolds. The above theorem says that the canonical isomorphism of D-rings $D\langle x \rangle \to N_*\Sigma$ which sends the generator x to the unique non-zero element x in $N_0(B\Sigma_1)$ preserves the operations of substitution.
References

(*) Canisius College, Buffalo, N.Y. (U.S.A). e-mail: bisson@canisius.edu.

(**) Département de Mathématiques, Université du Québec à Montréal, Montréal, Québec H3C 3P8. e-mail: joyal@math.uqam.ca.