AN EXAMPLE OF A NON-COFIBRANTLY GENERATED
MODEL CATEGORY

BORIS CHORNY

ABSTRACT. We show that the model category of diagrams of spaces generated
by a proper class of orbits is not cofibrantly generated. In particular the
category of maps between spaces may be given a non-cofibrantly generated
model structure.

1. INTRODUCTION AND FORMULATION OF RESULTS

Several examples of non-cofibrantly generated model categories have appeared
recently (see [1], [2], [6]) in response to a question stated by Mark Hovey on his
home page. In this note we introduce another family of such examples.

By the category of spaces, denoted by S, we mean the category of simplicial sets
(or compactly generated topological spaces). There are plenty of model structures
on categories of diagrams of spaces, with different notions of weak equivalences.
Some of them are cofibrantly generated, e.g. for weak equivalences and fibrations
being objectwise and cofibrations obtained by the left lifting property with respect
to trivial fibrations, the corresponding model category is cofibrantly generated.

Let us remind (from [3], [4], [5]) that a diagram O of spaces is called an orbit
if $\text{colim } O = \star$. The weak equivalences which we would like to consider arise naturally
from the relation of equivariant homotopy. By the generalized Bredon theorem [5]
a map $f : X \rightarrow Y$ is an equivariant homotopy equivalence between diagrams which
are both cofibrant and fibrant iff $map(O, f) : map(O, X) \rightarrow map(O, Y)$ is a weak
equivalence of spaces for any orbit O. A model category, generated by the collection
of orbits, on diagrams of spaces was constructed in [4] with a map f being a weak
equivalence (resp. fibration) iff $map(O, f)$ is a weak equivalence (resp. fibration)
for any orbit O. In the sequel we consider only this model category on diagrams
of spaces. The simplest example of a non-cofibrantly generated model category is
given by the following

Theorem 1.1. If $J = (\bullet \rightarrow \bullet)$ is the category with two objects and only one non-
identity morphism, then the functor category $M = S^J$ of maps of spaces with the
model structure as above is not cofibrantly generated.

However, not every small category gives rise to a non-cofibrantly generated model
category of diagrams. For example, if we take G to be a group, then the above
model structure on S^G is cofibrantly generated. We conclude the paper by using
this example to produce many other examples of the same nature.

Date: December 12, 2001.
1991 Mathematics Subject Classification. Primary 55U35; Secondary 55P91, 18G55.
Key words and phrases. model category, equivariant homotopy, non-cofibrantly generated.

The author is a fellow of the Marie Curie Training Site hosted by the Centre de Recerca
Matemàtica (Barcelona), grant nr. HPMT-CT-2000-00075 of the European Commission.
Acknowledgments. I would like to thank C. Casacuberta and E. Dror Farjoun for helpful conversations about the subject matter of this paper.

2. Preliminaries

By an orbit over a point in the colimit of a diagram X we mean the pull back of the canonical map $f : X \to \text{colim } X$ over $g : * \to \text{colim } X$. Let D be any small category enriched over \mathcal{S}. We denote by \mathcal{O} the collection of all orbits of D. By collection we mean a set or a proper class with respect to some fixed universe \mathcal{U}. The operator $\text{codom}(\cdot)$ applied to a collection of maps returns the collection of ranges. Given a set I of maps in $\mathcal{M} = \mathcal{S}^D$, we denote by I-cell the collection of relative I-cellular complexes and by abs-I-cell the collection of (absolute) I-cellular complexes. See [7, 2.1.9] for precise definitions.

Definition 2.1. Let $\mathcal{X} = \{X_\alpha\}_{\alpha \in A}$ be a collection of D-shaped diagrams of spaces. The collection of orbits of \mathcal{X}, denoted by $\Omega(\mathcal{X}) \subset \mathcal{O}$, consists of all orbits $O \in \mathcal{O}$ such that there exists $\alpha \in A$ and a point $x \in \text{colim } X_\alpha$ with O being the orbit over x.

Lemma 2.2. Let I be a set of cofibrations in the model category \mathcal{M} of D-shaped diagrams of spaces. Then $\Omega(\text{abs-$I$-cell}) \subset \Omega(\text{codom}(I))$.

Proof. Let $X \in \mathcal{M}$ be any I-cellular complex. We proceed by transfinite induction on the I-cellular filtration of X. $X_{-1} = \emptyset$, hence $X_0 \in \text{codom}(I)$ and in particular $\Omega(X_0) \subset \Omega(\text{codom}(I))$.

Suppose X_β satisfies $\Omega(X_\beta) \subset \Omega(\text{codom}(I))$. We need to show that $X_{\beta+1}$, which is obtained from X_β by attaching a map $I \ni f : A \rightarrow B$, satisfies $\Omega(X_{\beta+1}) \subset \Omega(\text{codom}(I))$.

\[
\begin{array}{ccc}
A & \xrightarrow{\varphi} & X_\beta \\
f \downarrow & & f' \downarrow \text{push-out} \\
B & \longrightarrow & X_{\beta+1}
\end{array}
\]

Let O_s be an orbit over a point $s \in \text{colim } X_{\beta+1} = \text{colim } X_\beta \amalg \text{colim } A \text{ colim } B$. Considering two cases, $s \in \text{colim } X_\beta \subset \text{colim } X_{\beta+1}$ and $s \not\in \text{colim } X_\beta$, we find out that in the first case O_s equals the corresponding orbit of X_β and in the second case O_s is some orbit of B. This follows immediately from the fact that the diagrams

\[
\begin{array}{ccc}
X_\beta & \xrightarrow{f'} & X_{\beta+1} \\
\downarrow & & \downarrow \\
\text{colim } X_\beta & \longrightarrow & \text{colim } X_{\beta+1}
\end{array}
\quad
\begin{array}{ccc}
B/A & \xrightarrow{\pi} & X_{\beta+1}/X_\beta \\
\downarrow & & \downarrow \\
\text{colim}(B/A) & \xrightarrow{\cong} & \text{colim}(X_{\beta+1}/X_\beta)
\end{array}
\]

are pull-backs. The first square is a pull-back by [4, 2.1] and the second by the observation that horizontal maps are isomorphisms, hence $\Omega(X_{\beta+1}) \subset \Omega(\text{codom}(I))$.

Obviously, if β is a limit ordinal, then $\Omega(X_\beta) = \bigcup_{\lambda < \beta} \Omega(X_\lambda) \subset \Omega(\text{codom}(I))$.

Hence $\Omega(\text{abs-$I$-cell}) \subset \Omega(\text{codom}(I))$. \qed
3. Proof of Theorem 1.1

Let us prove first a slightly more general result.

Proposition 3.1. Let \(D \) be a small category enriched over \(S \) which admits a proper class of orbits \(\mathcal{O}_D \). Then the model category \(\mathcal{M} \) on the \(D \)-shaped diagrams of spaces generated by the orbits is not cofibrantly generated.

Proof. We argue by contradiction. Suppose the model category \(\mathcal{M} \) generated by the proper class of orbits \(\mathcal{O}_D \) is cofibrantly generated. Let \(I \) be the set of generating cofibrations, then any cofibration is a retract of an \(I \)-cellular map. (This follows from Quillen’s small object argument; see [7, 2,115].) In particular, any orbit of \(\mathcal{O}_D \) is a retract of an \(I \)-cellular complex. Hence any orbit is a retract of some orbit of an \(I \)-cellular space. But by 2,2 the whole collection of orbits of \(I \)-cellular complexes form a set, hence the contradiction.

In particular, the model category \(S^J \) is generated by the proper class of orbits \(\mathcal{O}_J = \{ X \to * \} \), where \(X \) runs through all the objects of \(S \). Therefore, by Proposition 3.1, \(S^J \) is not cofibrantly generated, hence the main result 1.1.

4. More examples

Let us conclude by giving more examples of non-cofibrantly generated model categories. Proposition 3.1 implies that \(\mathcal{M} = S^D \) is not cofibrantly generated if \(\mathcal{O}_D \) is a proper class. We have already indicated in the introduction that if we take \(D = G \) to be a group, then \(\mathcal{O}_G = \{ G/H \mid H < G \} \) is a set, hence \(S^G \) is cofibrantly generated. The same holds for groupoids. However, the following proposition provides us with a large family of examples.

Proposition 4.1. Let \(D \) be a small category which admits a fully faithful functor \(i : K
\rightarrow D \), where \(K \) is a category with two objects \(k_1, k_2 \), at least one arrow \(f : k_1 \to k_2 \) and no arrows in the opposite direction. Then \(\mathcal{O}_D \) consists of a proper class of orbits.

Proof. First define for each space \(X \in S \) an orbit over \(K \), i.e., a functor \(T_X : K \to S \), by \(T_X(k_1) = X \), \(T_X(k_2) = * \), \(T_X(g) = \text{id}_X \) for any \(g \in \text{mor}(k_1, k_1) \) and \(T_X \) on the elements of \(\text{mor}(k_1, k_2) \). \(\text{mor}(k_2, k_2) \) has a unique definition, since \(* \) is the final object of \(S \). Obviously \(T_X \) is an orbit over \(K \).

Next we define for each \(T_X \) a \(D \)-orbit \(O_X \) by extending the definition of \(T_X \) to the whole \(D \). More precisely, \(O_X = \text{Lan}_i T_X \). We need to check that \(O_X \) is an orbit. It follows from the fact that colimit is itself a left Kan extension along a functor into the trivial category. But any two left Kan extensions commute since they may be represented as coends, and for the coends there is a “Fubini” theorem. See [8, X] for the details.

The functor \(i \) is taken to be fully faithful, hence \(O_X(i(k_1)) = X \); therefore we obtain a proper class of \(D \)-orbits of the form \(O_X \).

Question 4.2. Let \(D \) be a monoid which is not a group. Is \(S^D \) cofibrantly generated?

References

CENTRE DE RECERCA MATEMÀTICA, APARTE 50, E-08193 BELLPERRA, SPAIN
E-mail address: chorny@crm.es