HOMOLOGICAL LOCALIZATIONS
OF EILENBERG-MAC LANE SPECTRA

JAVIER J. GUTIÉRREZ

ABSTRACT. We discuss the Bousfield localization \(L_E X \) for any spectrum \(E \) and any \(HR \)-module \(X \), where \(R \) is a ring with unit. Due to the splitting property of \(HR \)-modules, it is enough to study the localization of Eilenberg-Mac Lane spectra. Using general results about stable \(f \)-localizations, we give a method to compute the localization of an Eilenberg-Mac Lane spectrum \(L_E HG \) for any spectrum \(E \) and any abelian group \(G \). We describe \(L_E HG \) explicitly when \(G \) is one of the following: finitely generated abelian groups, \(p \)-adic integers, \(\mathbb{Z} \)-localizations, \(p \)-adic groups, and subrings of the rationals. The results depend basically on the \(E \)-acyclicity patterns of the spectrum \(HQ \) and the spectrum \(HZ/p \) for each prime \(p \).

1. INTRODUCTION

Homological localizations were first defined by Adams [Ada73]. Bousfield developed the theory further by proving the existence of homological localizations in the category of spaces [Bou75] and in the category of spectra [Bou79b].

Given any spectrum \(E \), a homological localization functor with respect to \(E \) is a homotopy idempotent transformation \(L_E: Ho^+ \to Ho^+ \), where \(Ho^+ \) is the stable homotopy category, that turns \(E \)-homology equivalences into homotopy equivalences in a universal way. Homological localizations are special cases of \(f \)-localizations in the sense of [Dro96] and commute with the suspension operator.

In [CG05], we presented a general study of \(f \)-localizations of \(HR \)-module spectra and discussed the preservation of several structures under the effect of these functors. In this paper, we restrict our attention to homological localizations in order to obtain more explicit results. In fact, we translate to spectra some of the results of [Bou82], by using ideas of [CG05] to simplify the arguments.

In [Bou79b], Bousfield determined the homological localizations of connective spectra with respect to connective homology theories. A spectrum \(X \) is connective if \(\pi_k(X) = 0 \) for \(k < 0 \). If either \(E \) or \(X \) fail to be connective, then \(L_EX \) is somehow unpredictable. For example, the spectrum \(L_KS \), where \(K \) denotes complex \(K \)-theory and \(S \) is the sphere spectrum, has infinitely many nonzero homotopy groups in both positive and negative dimensions (see [Rav84, Theorem 8.10] or [CG05, Corollary 5.15]).

We study \(L_E X \) where \(E \) is any homology theory (not necessarily connective) and \(X \) is any \(HR \)-module spectrum for a ring \(R \) with unit. Since any \(HR \)-module splits as a wedge of suspensions of Eilenberg-Mac Lane spectra, we focus on the study of \(L_E HG \) for any homology theory \(E \) and any abelian group \(G \), where \(HG \) denotes the Eilenberg-Mac Lane spectrum associated to \(G \). We describe all possible homological localizations in the case of finitely generated abelian groups and other groups, including the \(p \)-adic integers, the Prüfer groups \(\mathbb{Z}/p^\infty \), and subrings of the rationals. For example, in the case of the spectrum \(HZ \), by the general approach
of [CG05] we know any of its localization has at most one nonzero homotopy group and that this group has the structure of a rigid ring in the sense of [CRT00]. We prove that, for homological localizations of HZ, the only rigid rings that appear are subrings of the rationals or products of p-adic integers for different primes.

The computations of these localizations depend on the E-acyclicity patterns of the spectra HZ/p and $H\mathbb{Q}$, and on the set of primes p such that G is uniquely p-divisible, similarly as in [Bou82].

Acknowledgements. I am especially indebted to A. K. Bousfield for encouraging me to write this paper and for sharing his insight. I would also like to thank Carles Casacuberta and Mark Hovey for many useful conversations.

2. Homological localization of spectra

We will work in the stable homotopy category of spectra Ho^* (see [Ada74]). Any spectrum E in Ho^* gives rise to a homology theory defined as $E_k(X) = \pi_k(E \wedge X)$ for any spectrum X and any $k \in \mathbb{Z}$. Homological localization with respect to the homology theory E is a functor that transforms homology equivalences with respect to this theory into homotopy equivalences in a universal way. It is unique up to homotopy and idempotent.

A map of spectra $f: X \rightarrow Y$ is an E-equivalence if the map $f_*: E_k(X) \rightarrow E_k(Y)$ is an isomorphism for all $k \in \mathbb{Z}$. A spectrum $X \in Ho^*$ is called E-acyclic if $E_k(X) = 0$ for all $k \in \mathbb{Z}$, that is, if $E \wedge X$ is contractible. A spectrum Z is E-local if each E-equivalence $X \rightarrow Y$ induces a homotopy equivalence $F(Y, Z) \simeq F(X, Z)$, or equivalently if $F(W, Z) = 0$ for each E-acyclic spectrum W, where $F(X, Y)$ denotes the function spectrum from X to Y. An E-localization of a spectrum X is a map $\eta_X: X \rightarrow L_EX$, where X is an E-local spectrum and η_X is an E-equivalence. Homological localization is universal in the following sense: the localization map η_X is initial among maps from X to E-local spectra and it is terminal among all E-equivalences with domain X.

The class of all the E-acyclic spectra for a given spectrum E is denoted by $\langle E \rangle$ and called the Bousfield class or the acyclicity class of E. Given two spectra E and F, the E-localization functor and the F-localization functor are equivalent if and only if $\langle E \rangle = \langle F \rangle$. By Okawara’s theorem, there is only a set of Bousfield classes [DP01], and therefore a set of non-equivalent homological localization functors.

3. Acyclicity patterns of HZ/p and localization of HR-modules

In this section we study how the E-acyclicity patterns of HZ/p determine the localization $L_{HZ/p}X$ for any spectrum E and any HR-module spectrum X. For any spectrum E and any abelian group G, let $EG = E \wedge MG$, where MG is the Moore spectrum associated to G.

A spectrum E is called a stable R-GEM if it is homotopy equivalent to a wedge of suspensions of Eilenberg–Mac Lane spectra, i.e., $E \simeq \vee_{k \in \mathbb{Z}} \Sigma^k HA_k$, where each A_k is an R-module (hence, each HA_k is an HR-module spectrum). If $R = \mathbb{Z}$, then stable \mathbb{Z}-GEMs are called simply stable GEMs. The Eilenberg–Mac Lane spectrum HG is an R-GEM if G is an R-module. The stable R-GEMs are precisely the spectra that admit a module structure over the ring spectrum HR (see for example [CG05, Proposition 4.4]).

The splitting property of HR-modules allows us to describe their localization easily. Note that every HR-module is an HZ-module trivially via the morphism $\mathbb{Z} \rightarrow R$ that sends the unit of \mathbb{Z} to the unit of the ring R. And also that homological localizations commute with suspension, i.e., $L_E \Sigma^k HG \simeq \Sigma^k L_E HG$ for all $k \in \mathbb{Z}$.
\mathbb{Z}, since the desuspension of an E-equivalence is again an E-equivalence [CG05, Proposition 2.4].

Proposition 3.1. $L_E(\vee_{k \in \mathbb{Z}} \Sigma^k H A_k) \simeq \vee_{k \in \mathbb{Z}} (\Sigma^k L_E H A_k)$ for any spectrum E.

Proof. The spectrum $\vee_{k \in \mathbb{Z}} (\Sigma^k L_E H A_k)$ is E-local, since the natural map

$$\bigvee_{k \in \mathbb{Z}} \Sigma^k L_E H A_k \longrightarrow \prod_{k \in \mathbb{Z}} \Sigma^k L_E H A_k$$

is a homotopy equivalence, because by [CG05, Theorem 5.6] for each value of k, at most two nonzero homotopy groups appear in $L_E H A_k$. Now, the map

$$\bigvee_{k \in \mathbb{Z}} \Sigma^k H A_k \longrightarrow \bigvee_{k \in \mathbb{Z}} \Sigma^k L_E H A_k$$

is an E-equivalence, because it is a wedge of E-equivalences. \hfill \square

In [Bou79a], Bousfield showed that

$$(3.1) \quad \langle E \rangle = \langle EQ \rangle \vee \bigvee_{p \in \mathcal{P}} \langle EZ/p \rangle,$$

for any spectrum E, where \mathcal{P} is the set of all primes. In fact, what this means essentially is that we can recover $L_E X$ for any E and X from information on what happens rationally, $L_{EQ} X$, and at each prime, $L_{EQ/p} X$. The following result of Bousfield [Bou79b, Proposition 2.9] illustrates this fact. Recall that a commutative diagram of spectra

$$\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\downarrow h & & \downarrow g \\
Z & \xrightarrow{i} & W
\end{array}$$

is an arithmetic square if there is a map $j: W \longrightarrow \Sigma X$ such that

$$X \xrightarrow{(f,h)} Y \wedge Z \xrightarrow{(g,i)} W \longrightarrow \Sigma X$$

is a cofiber sequence of spectra.

Proposition 3.2. For all spectra E and X, there is an arithmetic square

$$(3.2) \quad \begin{array}{ccc}
L_E X & \longrightarrow & \prod_{p \in \mathcal{P}} L_{EQ/p} X \\
\downarrow & & \downarrow \\
L_{EQ} X & \longrightarrow & L_{EQ}(\prod_{p \in \mathcal{P}} L_{EQ/p} X),
\end{array}$$

where \mathcal{P} is the set of all primes. \hfill \square

The EQ-localizations were completely determined in [Bou79b]. For any spectrum E, all these localizations are equivalent to rationalization. In fact, $L_{EQ} X = L_{MQ} X = X \wedge MQ$ for all E and X.

The computation of $L_{EQ/p} X$ for any E and any HR-module spectrum X depends on the E-acyclicity types of the spectrum HZ/p for each prime p. Note that if $\Sigma^i HZ/p$ is E-acyclic for some $i \in \mathbb{Z}$, then $\Sigma^k HZ/p$ is E-acyclic for all $k \in \mathbb{Z}$, since homological localizations commute with suspension.

Proposition 3.3. If HZ/p is E-acyclic, then $L_{EQ/p} X = 0$ for any HR-module spectrum X.
Proof. It is enough to check that MZ/p is E-acyclic, because in this case $EZ/p \wedge X \simeq E \wedge MZ/p \wedge X = 0$. The spectrum $MZ/p \wedge X$ is obviously $E\Omega$-acyclic and EZ/q-acyclic for $q \neq p$. In the case $q = p$, we have that

$$MZ/p \wedge X \wedge EZ/p \simeq X' \wedge HZ \wedge MZ/p \wedge EZ/p = 0$$

since X is an HZ-module and therefore splits as $HZ \wedge X'$ for some spectrum X', and $HZ \wedge EZ/p \simeq E \wedge HZ/p = 0$. Now using the decomposition (3.1), we have that X is EZ/p-acyclic. \hfill \Box

Lemma 3.4. If HZ/p is not E-acyclic and $f: X \longrightarrow Y$ is an EZ/p-equivalence, then it is an HZ/p-equivalence.

Proof. Since homological localizations commute with suspension, if we smash f with any spectrum the resulting map is an EZ/p-equivalence. In particular, if we smash with the spectrum HZ, the map $f \wedge HZ$ induces an equivalence

$$EZ/p \wedge HZ \wedge X \simeq EZ/p \wedge HZ \wedge Y.$$

The spectrum $EZ/p \wedge HZ \simeq E \wedge HZ/p$ is an HZ/p-module, so its homotopy groups are \mathbb{Z}/p-vector spaces and it splits as a wedge $\bigvee_{k \in I} \Sigma^k HZ/p$ (there may be repetitions in the index set I) and this wedge is non-trivial since by hypothesis $E \wedge HZ/p \neq 0$. Hence, f induces an equivalence

$$\bigvee_{k \in I} \Sigma^k HZ/p \wedge X \simeq \bigvee_{k \in I} \Sigma^k HZ/p \wedge Y$$

which turns f into an HZ/p-equivalence. \hfill \Box

The following theorem allows us to compute the localization $L_{EZ/p}$ of connective spectra or HR-modules when the spectrum HZ/p is not E-acyclic.

Theorem 3.5. If HZ/p is not E-acyclic, then $L_{EZ/p}X \simeq L_{MZ/p}X$ for every spectrum X that is connective or an HR-module.

Proof. If X is a connective spectrum, then $L_{MZ/p}X \simeq L_{HZ/p}X$ (see [Bou79b, Theorem 3.1]). The localization map $X \longrightarrow L_{MZ/p}X \simeq L_{HZ/p}X$ is an MZ/p-equivalence and therefore and EZ/p-equivalence. Moreover, the spectrum $L_{HZ/p}X$ is EZ/p-local since by Lemma 3.4 every HZ/p-local spectrum is EZ/p-local.

If X is an HR-module, the result follows from the above and Proposition 3.1. \hfill \Box

The case $L_{MZ/p}X$ can be computed using [Bou79b, Proposition 2.5]:

Proposition 3.6. For any spectrum X, we have that

$$L_{MZ/p}X \simeq F(\Sigma^{-1} MZ/p^\infty, X),$$

and there is a splitable exact sequence

$$0 \longrightarrow \text{Ext}(\mathbb{Z}/p^\infty, \pi_k(X)) \longrightarrow \pi_k(L_{MZ/p}X) \longrightarrow \text{Hom}(\mathbb{Z}/p^\infty, \pi_{k-1}(X)) \longrightarrow 0$$

for any $k \in \mathbb{Z}$. \hfill \Box

In the particular case when X is an Eilenberg–Mac Lane spectrum HG, we have that $L_{MZ/p}HG \simeq HA \vee \Sigma HB$ where $A \cong \text{Ext}(\mathbb{Z}/p^\infty, G)$ and $B \cong \text{Hom}(\mathbb{Z}/p^\infty, G)$.
4. Localizations of Eilenberg–Mac Lane spectra

In the study of homological localizations of HR-module spectra, we can focus our attention on the particular case of homological localizations of Eilenberg–Mac Lane spectra L_EHG, by Proposition 3.1. Homological localizations are a particular example of homotopical localizations or f-localizations. These localizations in the stable homotopy category have been studied in [CG05]. In that paper, we proved that the localization of any Eilenberg–Mac Lane spectrum has at most two nonzero homotopy groups in dimensions zero and one (see [CG05, Theorem 5.6]). Thanks to the Bousfield arithmetic square, to compute L_EHG it is enough to determine $L_{E\mathbb{Z}}/pHG$ for each prime p, since in the rational case $L_{E\mathbb{Q}}HG = H(\mathbb{Q} \otimes G)$ for any spectrum E.

An abelian group G is called uniquely p-divisible if for every $g \in G$ there exists a unique $h \in G$ such that $g = ph$. This condition is equivalent to saying that $\mathbb{Z}/p \otimes G = 0$ and $\text{Tor}(\mathbb{Z}/p, G) = 0$.

Lemma 4.1. For any spectrum E, the group $\pi_k(E)$ is uniquely p-divisible for all $k \in \mathbb{Z}$ if and only if $E_{/p} = 0$.

Proof. The result follows using the exact sequence

$$Z/p \otimes \pi_k(E) \to \pi_k(E_{/p}) \to \text{Tor}(Z/p, \pi_{k-1}(E)),$$

which is valid for every $k \in \mathbb{Z}$. □

As a particular case, we have that the abelian group $(HZ)_{/p}(E)$ is uniquely p-divisible for all $k \in \mathbb{Z}$ if and only if $HZ_{/p}$ is E-acyclic. Note also that if $\pi_k(E)$ is uniquely p-divisible, then $(HZ)_{/p}(E)$ is uniquely p-divisible.

Proposition 4.2. If $HZ_{/p}$ is not E-acyclic, then $L_{E\mathbb{Z}}/pHG = 0$ if and only if G is uniquely p-divisible.

Proof. If $L_{E\mathbb{Z}}/pHG = 0$, then $E \wedge HZ_{/p} \wedge MG = 0$. Since $E \wedge HZ_{/p}$ is an $HZ_{/p}$-module spectrum, we have that

$$E \wedge HZ_{/p} \wedge MG = \nabla_{k \in T} \Sigma^k HZ_{/p} \wedge MG = 0.$$

Therefore, $HZ_{/p} \wedge MG = MZ_{/p} \wedge HG = 0$ and thus G is uniquely p-divisible by Lemma 4.1.

On the other hand, if G is uniquely p-divisible, then by Lemma 4.1 we have that $HG \wedge MZ_{/p} = 0$ and hence $L_{E\mathbb{Z}}/pHG = 0$. □

By means of Theorem 3.5 and Proposition 4.2, one can now compute the localization $L_{E\mathbb{Z}}/HG$ depending on the E-acyclic patterns of $HZ_{/p}$. If $HZ_{/p}$ is E-acyclic, then $L_{E\mathbb{Z}}/pHG = 0$. If $HZ_{/p}$ is not E-acyclic, then $L_{E\mathbb{Z}}/pHG \cong L_{M\mathbb{Z}/p}HG$ if G is not uniquely p-divisible and zero otherwise. The arithmetic square (3.2) in the case $X = HG$ is the following:

$$(4.1) \quad L_EHG \to \prod_{p \in \mathcal{P}} L_{E\mathbb{Z}/p}HG \quad \text{by} \quad H(G \otimes \mathbb{Q}) \to M\mathbb{Q} \wedge (\prod_{p \in \mathcal{P}} L_{E\mathbb{Z}/p}HG),$$

where \mathcal{P} is the set of all primes p such that $HZ_{/p}$ is not E-acyclic and G is not uniquely p-divisible.

Theorem 4.3. Let $A_p = \text{Ext}(\mathbb{Z}/p\infty, G)$, $B_p = \text{Hom}(\mathbb{Z}/p\infty, G)$, and let \mathcal{P} be the set of primes such that $HZ_{/p}$ is not E-acyclic and G is not uniquely p-divisible.

For any spectrum E and any abelian group G, we have the following:
(i) If HQ is E-acyclic, then

$$L_EHQ = \prod_{p \in \mathcal{P}} (HA_p \vee \Sigma HB_p).$$

(ii) If HQ is not E-acyclic, then there is a cofiber sequence of spectra

$$L_EHQ \rightarrow H(Q \otimes G) \vee \prod_{p \in \mathcal{P}} (HA_p \vee \Sigma HB_p) \rightarrow MQ \wedge \prod_{p \in \mathcal{P}} (HA_p \vee \Sigma HB_p).$$

Proof. The result follows from Proposition 3.3, Proposition 4.2, Theorem 3.5 and the arithmetic square (4.1).

\[\square\]

5. Some Examples

In this section, we compute homological localizations of Eilenberg–Mac Lane spectra and HR-module spectra in some concrete examples. First, we compute L_EX for some non-connective homology theories E and any HR-module spectrum X.

5.1. Localization with respect to n-th Morava K-theory $K(n)$. Let $n \geq 0$, p a fixed prime and $K(n)$ the spectrum of the n-th Morava K-theory at p. Recall that $\pi_*K(n) \cong \mathbb{Z}/p[v_n^{-1}, w_n]$ where $|w_n| = 2(p^n - 1)$ for $n \geq 1$.

If $n = 0$, then $K(0) = HQ = MQ$ and so $L_{K(0)}HG = H(G \otimes \mathbb{Q})$. In the case $n \geq 1$ we know that $K(n) \wedge MQ = 0$ and HZ/p is $K(n)$-acyclic for every prime p, because $K(n) \wedge HZ/p = 0$ for all primes p (see for example [Rav84, Theorem 2.1]). Thus $L_{K(n)}HG = 0$ for $n \geq 1$. Hence,

Proposition 5.1. For any HR-module X, its localization with respect to $K(n)$ is either zero if $n \geq 1$, or rationalization if $n = 0$, i.e., $L_{K(0)}X = X \wedge MQ$.

5.2. Localization with respect to Johnson–Wilson spectra $E(n)$. The Bousfield class of $E(n)$ splits as a wedge of Morava K-theories, $\langle E(n) \rangle = \langle K(0) \rangle \vee \ldots \vee \langle K(n) \rangle$ (see [Rav84, Theorem 2.1]); therefore $L_{E(n)}HG = L_{K(0)}HG = H(G \otimes \mathbb{Q})$ since $L_{K(i)}HG = 0$ if $i \geq 1$.

5.3. Localization with respect to complex K-theory. The spectrum HZ/p is K-acyclic for every prime p and $KQ \neq 0$, so $L_KHG = H(G \otimes \mathbb{Q})$. Therefore, we infer the following:

Proposition 5.2. For any HR-module spectrum X, its localization with respect to $E(n)$ or K-theory is rationalization.

\[\square\]

In the next examples, we use Theorem 4.3 to compute all the possible homological localizations of the spectrum HG with respect to any E for some families of abelian groups. Given any spectrum E and any abelian group G, we have the following acyclicity patterns that determine the localization L_EHG completely. These patterns are the stable analogues of Condition I and Condition II of [Bou82, Section 4]:

- **Pattern I:** $EQ = 0$ and $E \wedge HZ/p = 0$ for all primes p.
- **Pattern II:** $EQ \neq 0$ and $E \wedge HZ/p = 0$ for all primes p.
- **Pattern III:** $EQ = 0$ and $E \wedge HZ/p \neq 0$ for all primes p in a set of primes \mathcal{P}.
- **Pattern IV:** $EQ \neq 0$ and $E \wedge HZ/p \neq 0$ for all primes p in a set of primes \mathcal{P}.

Note that if Pattern I holds, we have that $L_EHG = 0$ for any abelian group G.
5.4. **Localizations of \(HZ \).** The abelian group of the integers is not uniquely \(p \)-divisible for any prime \(p \). If Pattern II holds, then \(L_EHZ = HQ \). We have that

\[
\text{Hom}(\mathbb{Z}/p^\infty, \mathbb{Z}) = 0 \quad \text{and} \quad \text{Ext}(\mathbb{Z}/p^\infty, \mathbb{Z}) = \hat{\mathbb{Z}}_p,
\]

where \(\hat{\mathbb{Z}}_p \) is the ring of \(p \)-adic integers. If Pattern III holds, then \(L_EHZ = H(\prod_{p \in \mathcal{P}} \hat{\mathbb{Z}}_p) \). And if Pattern IV holds, then taking \(\pi_0 \) in the square (4.1) we have the following pullback diagram of abelian groups:

\[
\begin{array}{ccc}
\pi_0(L_EHZ) & \longrightarrow & \prod_{p \in \mathcal{P}} \hat{\mathbb{Z}}_p \\
\downarrow & & \downarrow \\
\mathbb{Q} & \longrightarrow & \mathbb{Q} \otimes \prod_{p \in \mathcal{P}} \hat{\mathbb{Z}}_p,
\end{array}
\]

where \(\mathcal{P} \) is the set of all primes \(p \) such that \(E \wedge HZ/p \neq 0 \). So \(L_EHZ = HZ_{\mathcal{P}} \).

In [CG05, Theorem 5.12] we proved that every \(f \)-localization of the spectrum \(HZ \) has at most one nonzero homotopy group, which acquires the structure of a rigid ring in the sense of [CRT00]. A ring \(A \) with unit is rigid if evaluation a 1 induces an isomorphism of abelian groups \(\text{Hom}(A, A) \cong A \). In the special case of homological localizations we get the following:

Proposition 5.3. For any spectrum \(E \), we have that \(L_EHZ \) is either zero or \(HA \), where the rigid ring \(A \) is a subring of \(\mathbb{Q} \) or a product of \(p \)-adic integers for different primes. \(\square \)

5.5. **Localizations of \(HZ/p^k \) for a prime \(p \).** The group \(\mathbb{Z}/p^k \) is uniquely \(q \)-divisible for every \(q \neq p \) and moreover \(L_{EQ}HZ/p^k \simeq H(\mathbb{Q} \otimes \mathbb{Z}/p^k) = 0 \) for all \(p \).

We have that

\[
\text{Hom}(\mathbb{Z}/p^\infty, \mathbb{Z}/p^k) = 0 \quad \text{and} \quad \text{Ext}(\mathbb{Z}/p^\infty, \mathbb{Z}/p^k) = \mathbb{Z}/p^k,
\]

hence \(L_EHZ/p^k = 0 \) under Pattern II and \(L_EHZ/p^k = HZ/p^k \) under Pattern III or Pattern IV.

5.6. **Localizations of \(HQ \).** The group \(\mathbb{Q} \) is uniquely \(p \)-divisible for every prime \(p \), so \(L_{E\mathbb{Q}}HZQ = 0 \) for all \(p \). If Pattern III holds, then \(L_EHZ = 0 \) and \(L_EHZQ = HZ \) under Pattern II or Pattern IV.

5.7. **Localization of \(HZ_{\mathcal{P}} \) for a set of primes \(\mathcal{P} \).** For every prime \(p \in \mathcal{P} \), we have that

\[
\text{Hom}(\mathbb{Z}/p^\infty, \mathbb{Z}_{\mathcal{P}}) = 0 \quad \text{and} \quad \text{Ext}(\mathbb{Z}/p^\infty, \mathbb{Z}_{\mathcal{P}}) = \hat{\mathbb{Z}}_p.
\]

In fact, \(\text{Hom}(\mathbb{Z}/p^\infty, G) = 0 \) if \(G \) is a torsion-free abelian group and \(\text{Ext}(\mathbb{Z}/p^\infty, G) = 0 \) if and only if \(G \) is \(p \)-divisible. If Pattern II holds, then \(L_EHZ_{\mathcal{P}} = HQ \) because \(\mathbb{Q} \otimes \mathbb{Z}_{\mathcal{P}} \cong \mathbb{Q} \). If Pattern III holds, then \(L_EHZ_{\mathcal{P}} = H(\prod_{p \in \mathcal{P}} \hat{\mathbb{Z}}_p) \). And if Pattern IV holds, then \(L_EHZ_{\mathcal{P}} = HZ_{\mathcal{P}} \), where \(\mathcal{P} \) is the set of all primes \(p \) such that \(HZ/p \) is not \(E \)-acyclic. Note that this case generalizes the cases of the localization of \(HZ \) (when \(\mathcal{P} = \emptyset \)) and \(HQ \) (when \(\mathcal{P} \) is the set of all primes).

5.8. **Localizations of \(HZ/p^\infty \).** The group \(\mathbb{Z}/p^\infty \) is uniquely \(p \)-divisible for every prime \(q \neq p \). In this case, \(L_{E\mathbb{Q}}HZ/p^\infty = 0 \) since \(\mathbb{Q} \otimes \mathbb{Z}/p^\infty = 0 \) for all \(p \). We have that

\[
\text{Hom}(\mathbb{Z}/p^\infty, \mathbb{Z}/p^\infty) = \hat{\mathbb{Z}}_p \quad \text{and} \quad \text{Ext}(\mathbb{Z}/p^\infty, \mathbb{Z}/p^\infty) = 0.
\]

Thus, under Pattern II, \(L_EHZ/p^\infty = 0 \). If Pattern III holds, then \(L_EHZ/p^\infty \simeq \Sigma H\hat{\mathbb{Z}}_p \). And if Pattern IV holds, then by Theorem 3.3 we have a cofiber sequence of spectra

\[
L_EHZ/p^\infty \longrightarrow \Sigma H\hat{\mathbb{Z}}_p \longrightarrow \Sigma H\hat{\mathbb{Q}} \longrightarrow \Sigma H(\hat{\mathbb{Q}}/\hat{\mathbb{Z}}_p),
\]
where \(\hat{\mathbb{Q}} \cong \hat{\mathbb{Z}}_p \otimes \mathbb{Q} \) are the \(p \)-adic rationals. Hence, \(L_E H \mathbb{Z}/p^\infty = H(\hat{\mathbb{Q}}/\hat{\mathbb{Z}}_p) \cong H \mathbb{Z}/p^\infty \).

5.9. **Localization of \(H \mathbb{Z}_p \)**. We only have to focus on the prime \(p \), because \(\hat{\mathbb{Z}}_p \) is uniquely \(q \) divisible for all primes \(q \neq p \). In this case, we have that

\[
\text{Hom}(\mathbb{Z}/p^\infty, \hat{\mathbb{Z}}_p) = 0 \quad \text{and} \quad \text{Ext}(\mathbb{Z}/p^\infty, \hat{\mathbb{Z}}_p) = \hat{\mathbb{Z}}_p.
\]

If Pattern II holds, then \(L_E H \hat{\mathbb{Z}}_p = H \hat{\mathbb{Q}}_p \). And if Pattern III or Pattern IV hold, then \(L_E H \hat{\mathbb{Z}}_p = H \hat{\mathbb{Z}}_p \).

The following table summarizes the results obtained for the homological localizations of Eilenberg–Mac Lane spectra for different groups. The set \(\mathcal{P} \) is the set of primes \(p \) such that \(H \mathbb{Z}/p \) is not \(E \)-acyclic.

<table>
<thead>
<tr>
<th>(L_E H \mathbb{Z})</th>
<th>Pattern A</th>
<th>Pattern B</th>
<th>Pattern C</th>
<th>Pattern D</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L_E H \mathbb{Z}/p^k)</td>
<td>0</td>
<td>(\prod_{p \in \mathcal{P}} H \hat{\mathbb{Z}}_p)</td>
<td>(H \mathbb{Z}/p^k)</td>
<td>(H \mathbb{Z}/p^k)</td>
</tr>
<tr>
<td>(L_E H \mathbb{Q})</td>
<td>0</td>
<td>(\prod_{p \in \mathcal{P}} H \hat{\mathbb{Z}}_p)</td>
<td>(H \mathbb{Q})</td>
<td>(H \mathbb{Q})</td>
</tr>
<tr>
<td>(L_E H \mathbb{Z}_R)</td>
<td>0</td>
<td>(\prod_{p \in \mathcal{P}} H \hat{\mathbb{Z}}_p)</td>
<td>(H \mathbb{Z}/p^\infty)</td>
<td>(H \mathbb{Z}/p^\infty)</td>
</tr>
<tr>
<td>(L_E H \hat{\mathbb{Z}}_p)</td>
<td>0</td>
<td>(\prod_{p \in \mathcal{P}} H \hat{\mathbb{Z}}_p)</td>
<td>(H \hat{\mathbb{Z}}_p)</td>
<td>(H \hat{\mathbb{Z}}_p)</td>
</tr>
</tbody>
</table>

5.10. **Localization of \(H G \) where \(G \) is a finitely generated abelian group.** Every finitely generated abelian group splits as a direct sum \(G = \bigoplus_{i=1}^n C_i \) where each \(C_i \) is either \(\mathbb{Z} \) or \(\mathbb{Z}/p^k \) for some prime \(p \) and \(k \geq 1 \). Since \(H G \cong \bigvee_{i=1}^n H C_i \), then \(L_E H G = \bigvee_{i=1}^n L_E H C_i \) and the localization of each \(H C_i \) is determined using the results of sections 5.4 and 5.5.

5.11. **Localization of \(H G \) where \(G \) is a divisible abelian group.** If \(G \) is a divisible abelian group, then \(G \cong R \oplus T \), where \(R = \bigoplus_i \mathbb{Q} \) and \(T = \bigoplus_p (\bigoplus_j \mathbb{Z}/p^j) \). In this case \(L_E H G \cong L_E H R \vee L_E H T \). Since \(R \) is a retract of \(\prod_i \mathbb{Q} \), we have that \(L_E H R = H R \) or \(L_E H R = 0 \) depending on whether \(H \mathbb{Q} \) is \(E \)-local or \(E \)-acyclic. The localization \(L_E H T \) can be determined using the exact sequence of abelian groups

\[
0 \rightarrow \mathbb{Z}/p \rightarrow \mathbb{Q} \rightarrow \bigoplus_{p \in \mathcal{P}} \mathbb{Z}/p^\infty \rightarrow 0
\]

together with the results of sections 5.6 and 5.8, and the fact that homological localizations preserve cofiber sequences.

6. **Localization of reduced Eilenberg–Mac Lane spectra**

In all the examples we have studied, except in the case of \(H \mathbb{Z}/p^\infty \), all the homological localizations of \(H G \) have at most one nonzero homotopy group in dimension zero. This property also holds when the group \(G \) is abelian reduced. An abelian group is **reduced** if it does not have nontrivial divisible subgroups. We say that the Eilenberg–Mac Lane spectrum \(H G \) is **reduced** if the group \(G \) is reduced.

Theorem 6.1. If \(H G \) is reduced, then \(L_E H G \) is either zero or \(H A \) for some abelian group \(A \) and for any spectrum \(E \).

Proof. If \(G \) is reduced, then \(\text{Hom}(\mathbb{Z}/p^\infty, G) = 0 \). The result follows now from Theorem 4.3. \(\square \)
Any abelian group G splits as a direct sum $G \cong G_1 \oplus G_2$, where G_1 is the maximal divisible subgroup of G and G_2 is reduced. Moreover, G_1 splits as a direct sum of \mathbb{Q}’s and $\mathbb{Z}/p\mathbb{Z}$ for several primes p. Hence, by Theorem 4.3 and the results in the previous section, the only possibility for the homological localization of an Eilenberg–MacLane spectrum HG to have a nonzero homotopy group in dimension one, is that some $\mathbb{Z}/p\mathbb{Z}$ appears as a factor of the decomposition of G and that $L_E H \mathbb{Z}/p\mathbb{Z} = \Sigma H^2 \mathbb{Z}_p$.

Corollary 6.2. If $\mathbb{Z}/p\mathbb{Z}$ does not occur as a direct summand of G for any prime p, then $L_E HG$ is either zero or HA for some abelian group A and any spectrum E. □

References

