SUMMARY: Let $\varphi : G \hookrightarrow \text{GL}(n, \mathbb{F})$ be a faithful representation of the finite group G over the field \mathbb{F}. In 1916 E. Noether proved that for \mathbb{F} of characteristic zero the ring of invariants $\mathbb{F}[V]^G$ is generated as an algebra by the invariant polynomials of degree at most $|G|$. This result has been generalized to the case where the characteristic of \mathbb{F} is greater than $|G|$, or when the characteristic of \mathbb{F} is prime to the order of G and the group G is solvable. In this note we show how to refine Noether’s proof to yield a more general nonmodular result. In particular we prove that Noether’s bound holds for the alternating groups in the nonmodular case.
Let G be a finite group and $\rho : G \to GL(n, IF)$ a faithful representation of G over the field IF. Via ρ, the group G acts on the vector space $V = IF^n$, and hence also on the graded algebra $IF[V]$ of homogeneous polynomial functions on V. The subalgebra of functions, $IF[V]^G$, fixed by the action of G is called the \textbf{ring of invariants of} G. As a general reference on invariant theory see [3].

In [2] E. Noether proved that, whenever the characteristic of IF is zero, then $IF[V]^G$ is a finitely generated as an algebra over IF. In addition she gave an algorithm to construct a system of generators using polarizations of elementary symmetric polynomials (see also [7] VII.B.15 or [3] §3.3). From this she deduced that $IF[V]^G$ is generated by invariant polynomials of degree at most $|G|$. This upper bound for the degrees of the generators in a minimal generating set is referred to as \textbf{Noether's bound}. This result has been extended to fields of characteristic $p \neq 0$ which satisfy $p \geq |G|$ (called the \textbf{strong nonmodular case}) in [6], and to solvable groups G, whose order $|G|$ is not divisible by p (called the \textbf{nonmodular case}) in [4]. It is known that if Noether's bound fails in the nonmodular case then it fails for a finite nonabelian simple group (see [5]). For this reason the alternating groups have become a test case for the conjecture that Noether's bound holds for all finite groups in the nonmodular case.

In this note we show how to refine one of Noether's arguments in [2] using ideas coming from permutation representations. This leads to results in the nonmodular case, that, for example, apply to the alternating groups A_n. For a different discussion of Noether's bound for the alternating groups see [5].

This research was done while preparing a lecture on Noether's bound for a \textbf{Crash Course on Invariant Theory} given by the author as Ordway Visitor at the School of Mathematics of the University of Minnesota. I would like to thank the more than twenty participants in this lecture series for their attentive and critical attitude, and probing questions.

I am very grateful to Kay Magaard for a number of tutorials on permutation representations. In particular, the idea to use that the regular representation of a finite group preserves the partition coming from a subgroup is due to him.

\section{Review of Noether's Proof}

In this section we review the essential steps in one of E. Noether's proofs [2] of the finite generation of rings of invariants of finite groups over the complex numbers (see also [3] Chapter 3). So, let $\rho : G \to GL(n, IF)$ be a representation of a finite group over the field IF. Let $V = IF^n$ and V^\ast its vector space dual, which we regard as the space of linear forms on V. Denote by $IF(G)$ the group algebra of G over IF, and consider the action map

$$\alpha : IF(G) \otimes IF V^\ast \to V^\ast$$

defined by

$$\alpha(g \otimes z) = gz \quad g \in G, z \in V^\ast.$$

If we let G act on $IF(G) \otimes IF V^\ast$ by

$$h(g \otimes z) = hg \otimes z \quad h, g \in G \text{ and } z \in V^\ast,$$

then the map α is G-equivariant. Let us write W for the vector space dual of $IF(G) \otimes IF V^\ast$. Then

$$W = (IF(G) \otimes IF V^\ast)^\ast = (IF(G))^\ast \otimes IF V^{**} = (IF(G))^\ast \otimes IF V = \text{Hom}_IF (IF(G), V) = \text{map}(G, V),$$
where map(G, V) is the vector space of maps of G into V. Dual to the map \(\alpha \) is the Noether map

\[\eta : V \rightarrow \text{map}(G, V) \]

which is a G-equivariant map, and hence, induces a G-equivariant map

\[\eta^* : \text{IF}[W] \rightarrow \text{IF}[V], \]

which we also refer to as the Noether map, though no confusion should arise. This is the map induced by \(\alpha \) if we regard \(\text{IF}[V] \) as \(S(V^*) \), and similarly \(\text{IF}[W] \) as \(S(W^*) \), where \(S(\, \cdot \,) \) is the symmetric algebra functor.

The action of G on map(G, V) = W is by permutation of the elements of the underlying set \(\Omega \) of G, and hence extends to an action of the full permutation group \(\Sigma_d \), where \(d = |G| \). Choose a basis \(z_1, \ldots, z_n \) for \(V^* \), then \(\{ g \otimes z_i \mid i = 1, \ldots, n, \text{ and } g \in G \} \) may be identified with a basis for \(W^* \). Define the operator

\[E : \text{IF}[V] \rightarrow \text{IF}[W] \]

by the formulae

\[E(f) = \sum_A \lambda_A E(z^A) \]

\[E(z^A) = \sum_{g \in G} (g \otimes z_1)^{a_1} \cdots (g \otimes z_n)^{a_n} \]

where \(A = (a_1, \ldots, a_n) \in \mathbb{N}_0 \times \cdots \times \mathbb{N}_0 \) is a multiindex of nonnegative integers, and

\[f = \sum \lambda_A z^A \]

expresses \(f \) as a sum of monomials \(z^A = z^{a_1} \cdots z^{a_n} \) with coefficients \(\lambda_A \in \text{IF} \). The following lemma is a direct consequence of the definitions (for a definition of the transfer homomorphism \(\text{Tr}^G \) and its properties see e.g., [3] Chapter 2).

Lemma 1.1: With the preceding notations, the operator \(E \) satisfies:

(i) \(E(f) \in \text{IF}[W]^\Sigma_d \) for all \(f \in \text{IF}[V] \), and

(ii) \(\eta^*(E(f)) = \text{Tr}^G(f) \) for all \(f \in \text{IF}[V] \).

As a consequence we obtain:

Proposition 1.2: Let \(\text{IF} \) be a field of characteristic \(p \) and \(G \) a group of order \(d = |G| \). Suppose that \(p \) does not divide \(d \). Then, with the preceding notations, we have that the composition

\[\varphi : \text{IF}[W]^\Sigma_d \hookrightarrow \text{IF}[W]^G \xrightarrow{(\eta^*)^G} \text{IF}[V]^G \]

is onto.

Proof: Since \(|G| = d \in \text{IF}^X \) the averaging operator

\[\pi := \frac{1}{|G|} \sum_{g \in G} g = \frac{1}{|G|} \text{Tr}^G : \text{IF}[V] \rightarrow \text{IF}[V]^G \]

is defined, and is a splitting for the inclusion \(\text{IF}[V]^G \hookrightarrow \text{IF}[V] \) (see e.g., [3] Section 2.4). Therefore the transfer

\[\text{Tr}^G : \text{IF}[V] \rightarrow \text{IF}[V]^G \]

is onto, and the result follows from Lemma 1.1. \(\square \)
For a graded connected commutative Noetherean algebra A over \mathbb{F} let us introduce the notation $\beta(A)$ for the maximal degree of a a generator of A in a minimal generating set. This is nothing but the degree of the Poincaré series, which in this case is a polynomial, of the module of indecomposables $QA := \bar{A} \otimes_\mathbb{F} \mathbb{F} = \bar{A}/(\bar{A})^2$,

where \bar{A} denotes the augmentation ideal of A. (See for example [3] Chapter 4 and Section 5.1) For a representation $\rho : G \hookrightarrow GL(n, \mathbb{F})$ then we write $\beta(\rho)$ for $\beta(\mathbb{F}[V]^G)$, and set

$$\beta_{IF}(G) = \max \{ \beta(\rho) \mid \rho : G \hookrightarrow GL(n, \mathbb{F}) \}.$$

Proposition 1.2 reduces finding an upper bound for $\beta(\rho)$ to finding one for $\beta(\mathbb{F}[W]^G)$. To do this, we note that W regarded as a Σ_d-representation has the following description:

$$W = \text{map}(\Omega, V) = \text{map}(\Omega, F^n) = \bigoplus_i \text{map}(\Omega, \mathbb{F}),$$

(remember Ω denotes the underlying set of G) and $\text{map}(\Omega, \mathbb{F})$ is just the defining representation τ of Σ_d over the field \mathbb{F}. If we denote this representation by X then

$$\mathbb{F}[W]^G = \mathbb{F}[\bigoplus_i X]^G,$$

which is the ring of vector invariants of vectors of dimension n for the defining representation of the symmetric group Σ_d. For these invariants we have the First Main Theorem of Invariant Theory for Σ_d [3] Theorem 3.3.1 (the proof is in Section 3.4; for a proof in characteristic zero see [7] VIII.B.15), which we state here in a form directly applicable to our discussion of Noether’s proof.

Theorem 1.3: Let $d \in \mathbb{N}$ be a positive integer and \mathbb{F} a field of characteristic p. Let $\tau : \Sigma_d \hookrightarrow GL(d, \mathbb{F})$ be the defining representation of G over the field \mathbb{F}. If $p > d$ then for any positive integer n, $\beta(\bigoplus_i \tau) = d$. \(\square\)

Since

$$\varphi : \mathbb{F}[W]^G = \mathbb{F}[\bigoplus_i X]^G \longrightarrow \mathbb{F}[V]^G$$

is onto we therefore conclude: if $p > d$ then $\beta(\rho) \leq \beta(\bigoplus_i \tau) = d = |G|$.

§2. Refining Noether’s Proof

In this section we show how to refine Noether’s proof to yield an improved condition on the characteristic of the ground field for the validity of $\beta_{IF}(G) \leq |G|$ (Noether’s bound). We continue to employ the notations of Section 1, in particular, $\rho : G \hookrightarrow GL(n, \mathbb{F})$ is a fixed representation of a finite group G of order $d = |G|$ over the field \mathbb{F} of characteristic p. For the moment we make no assumptions about the relation between p and d. As in Section 1 we let $W = \text{map}(\Omega, V)$, where Ω is the underlying G set of G, and we have the composite

$$\varphi : \mathbb{F}[W]^G \hookrightarrow \mathbb{F}[W]^G \overset{(\tau^*)^G}{\longrightarrow} \mathbb{F}[V]^G,$$

where G has been embedded in Σ_d via the regular representation $\text{reg}(G) : G \hookrightarrow \Sigma_d$. Notice that if S is any subgroup of Σ_d that contains the image of G under $\text{reg}(G)$ in Σ_d, then the factorization of φ

$$\varphi : \mathbb{F}[W]^G \hookrightarrow \mathbb{F}[W]^S \hookrightarrow \mathbb{F}[W]^G \overset{(\tau^*)^G}{\longrightarrow} \mathbb{F}[V]^G,$$
shows that the map
\[\text{IF}[W]^S \rightarrow \text{IF}[V]^G \]
is onto for \(|G| \in \text{IF}^\times \). Thus in Noether’s argument we could replace \(\Sigma_d \) by \(S \), if only we could find an \(S \) for which we could show \(\beta(\text{IF}[W]^S) \leq d \). We proceed to show how to do this.

Call a subgroup \(K \leq \Sigma_d \) **regular** if \(K \) acts transitively on \(\Omega \) and the isotropy groups \(K_\omega \) are all trivial, \(\omega \in \Omega \). Regular subgroups of \(\Sigma_d \) cannot sit arbitrarily in \(\Sigma_d \). To explain what is meant by this, choose a chain of maximal subgroups
\[\{1\} = G_k < G_{k-1} < \cdots < G_1 < G_0 = G \]
in \(G \), i.e., \(G_i \) is a maximal subgroup of \(G_{i-1} \) for \(i = 1, \ldots, k - 1 \). Let \(d_i = |G_i| \) and \(e_i = |G_i : G_{i+1}| \) for \(i = 0, \ldots, k - 1 \). Note that \(|G| = d = \prod_{i=1}^{k-1} e_i \).

\[\Omega = \Omega_1 \sqcup \cdots \sqcup \Omega_{e_0} \]
be the decomposition of \(\Omega \) into the left cosets of \(G_1 \) in \(G \). This partition of \(\Omega \) must be preserved by the action of \(G \) on \(\Omega \) via the regular representation, and therefore \(\text{reg}(G)(G) \) must sit in the largest subgroup of \(\Sigma_d \) that preserves this partition. This subgroup is
\[\Sigma_{d_1} \times \cdots \times \Sigma_{d_k} \times \Sigma_{e_0} = \Sigma_{d_1} \wr \Sigma_{e_0} \]
If we denote by \(\Gamma \) the underlying set of \(G_1 \) then the representation \(W \) as \(\Sigma_{d_1} \wr \Sigma_{e_0} \)-representation may be described as follows: Note
\[W = \text{map}(\Omega, V) = \text{map}(\bigcup_{\Omega_1} \cdots \bigcup_{\Omega_{e_0}}, V) = \bigoplus_{\Omega_{e_0}} \text{map}(\Gamma, V) \]
and that map(\(\Gamma, V \)) is just the direct sum of \(n \) copies of the defining representation of \(\Sigma_{d_1} \) over \(\text{IF} \). Therefore
\[\text{IF}[W]^\Sigma_{d_1} \times \cdots \times \Sigma_{d_k} = \bigoplus_n \text{IF}[Y]^\Sigma_{d_1} \]
where \(Y \) is the linear representation defined over \(\text{IF} \) from the representation of \(\Sigma_{d_0} \) as the permutations of \(\Gamma \). Let us write \(A = \text{IF}[Y]^\Sigma_{d_1} \) so that
\[\text{IF}[W]^\Sigma_{d_1} \wr \Sigma_{e_0} = \left(\bigoplus_n \text{IF}[W]^\Sigma_{d_1} \right)^\Sigma_{e_0} = \left(\bigoplus_n \text{IF}[Y]^\Sigma_{d_1} \right)^\Sigma_{e_0} = \left(\bigoplus n \right)^\Sigma_{e_0} \]
Notice that
\[\left(\bigoplus n \right)^\Sigma_{e_0} \]
are just the invariants of \(\Sigma_{e_0} \) acting by permutation of the tensor factors. We can employ the linearization process of [4] and [5] to obtain information on \(\beta\left(\bigoplus n \right)^\Sigma_{e_0} \) provided \(p \nmid |\Sigma_{e_0}| \), which is equivalent to \(p > e_0 \). Here is how this works.

Let \(A \) be generated by homogeneous forms of degree less than or equal to \(b = \beta(A) \) say. Let \(Z \) be the vector space dual of \(\bigoplus_{i=1}^{b} A_i \), where \(A_i \) denotes the homogeneous component of \(A \) in degree \(i \). Note that the natural map \(Z^* \rightarrow A \) extends to an epimorphism \(\text{IF}[Z] \rightarrow A \). Hence there is an induced map of algebras with \(\Sigma_{e_0} \) action
\[\bigoplus_{\Sigma_{e_0}} \text{IF}[Z] \rightarrow \bigoplus_{\Sigma_{e_0}} A \]
and, if \(p > e_0 \), i.e., \(|\Sigma_{e_0}| \) is not divisible by \(p \), then the induced map of the invariant subalgebras

\[
\left(\otimes_{\mathbb{Z}} \right)^{\Sigma_{e_0}} \rightarrow \left(\otimes_{\mathbb{A}} \right)^{\Sigma_{e_0}}
\]

is also surjective. Finally, if \(U \) denotes the \(\mathbb{K} \)-linear representation corresponding to the defining representation of \(\Sigma_{e_0} \), then

\[
\left(\otimes_{\mathbb{Z}} \right)^{\Sigma_{e_0}} \rightarrow \left(\otimes_{\mathbb{A}} \right)^{\Sigma_{e_0}}
\]

which are the vector invariants of the defining representation of \(\Sigma_{e_0} \) on vectors of dimension \(n \). Therefore, since we have already assumed that \(p > e_0 \), we can apply Theorem 1.3 to conclude that \(\beta \left(\left(\otimes_{\mathbb{Z}} \right)^{\Sigma_{e_0}} \right) = be_0 \), where we have reaccounted for the fact that \(b = \beta(A) \) is the maximal degree of an element in \(Z \). Hence \(\beta \left(\left(\otimes A \right)^{\Sigma_{e_0}} \right) \leq be_0 \). We therefore obtain

\[
\beta \left(\left(\otimes_{\mathbb{Z}} \right)^{\Sigma_{e_0}} \right) \leq \beta(A)e_0
\]

provided only that \(p > e_0 \).

If, in addition, \(p > d_1 \), we could apply Theorem 1.3 to \(\Sigma_{d_1} \) also, and could conclude that \(\beta \left(\left(\otimes_{\mathbb{Z}} \right)^{\Sigma_{d_1}} \right) \leq d_1 \). Combining all this would then give

\[
\beta(\rho) \leq \beta \left(\left(\otimes_{\mathbb{Z}} \right)^{\Sigma_{d_1}} \right) \leq d_1e_0 = d.
\]

If \(k > 1 \) the partition

\[
\Omega = \Omega_1 \sqcup \cdots \sqcup \Omega_{e_0}
\]

can be refined further by using the maximal subgroup \(G_2 < G_1 \) to partition the sets \(\Omega_i \), (Recall that the \(\Omega_i \) are the left cosets of \(G_1 \) in \(G_0 = G \)) into the left cosets of \(G_2 \) in \(G_1 \). Denote the resulting partition of \(\Omega_i \) by

\[
\Omega_i = \Omega_{i,1} \sqcup \cdots \sqcup \Omega_{i,e_0}.
\]

note that the action of \(G \) on \(\Omega \) must preserve the multipartition

\[
\Omega = \bigsqcup_{i=1}^{e_0} \bigsqcup_{j=1}^{e_i} \Omega_{i,j},
\]

so \(\text{reg}(G)(G) \) must belong to the subgroup of \(\Sigma_d \) consisting of all permutations preserving this multipartition. This subgroup is:

\[
(\Sigma_{d_2} \wr \Sigma_{e_0}) \wr \Sigma_{e_0}.
\]

Continuing in this way, we find that the image in \(\Sigma_d \) of \(G \) under the regular representation preserves the multipartition

\[
\Omega = \bigsqcup_{i_k=1}^{e_{k-1}} \bigsqcup_{i_{k-1}=1}^{e_{k-2}} \cdots \bigsqcup_{i_1=1}^{e_0} \Omega_{i_{k-1} \cdots i_1}
\]

obtained from the full chain of maximal subgroups, and therefore is a subgroup of

\[
(\cdots (\Sigma_{e_{k-1}} \wr \Sigma_{e_{k-2}}) \wr \cdots) \wr \Sigma_{e_0} \wr \Sigma_{e_0}).
\]

Inductively applying the preceding arguments, we obtain the degree bound

\[
\beta \left(\left(\otimes_{\mathbb{Z}} \right)^{\cdots (\Sigma_{e_{k-1}} \wr \Sigma_{e_{k-2}}) \cdots \wr \Sigma_{e_0}} \right) \leq \prod_{i=0}^{k-1} e_i = d,
\]

provided that \(e_0, e_1, \ldots, e_{k-1} \) are invertible in \(\mathbb{K} \). Therefore we have shown:
Theorem 2.1: Let IF be a field of characteristic p, G a finite group, and

$$\{1\} = G_k < G_{k-1} < \cdots G_1 < G_0 = G$$

a chain of maximal subgroups in G, i.e., G_i is a maximal subgroup of G_{i-1} for $i = 1, \ldots, k - 1$. Let $e_i = |G_i : G_{i+1}|$ for $i = 0, \ldots, k - 1$. If

$$p > \max\{e_{k-1}, \ldots, e_0\},$$

then $\beta_{IF}(G) \leq |G|$. \(\square\)

Remark: Note that the condition $p > \max\{e_{k-1}, \ldots, e_0\}$ in the preceding theorem implies that $p \not| |G|$.

Corollary 2.2: Let IF be a field of characteristic p, $n \in \mathbb{N}$ a positive integer, and A_n the alternating group on n letters. If $p > n$ then $\beta_{IF}(A_n) \leq |A_n|$, i.e., Noether's bound holds for the alternating groups A_n, $n \in \mathbb{N}$, in the nonmodular case.

Proof: Apply Theorem 2.1 to the chain of maximal subgroups

$$\{1\} = A_2 < A_3 < \cdots < A_{n-1} < A_n$$

and note that $p > n$ is equivalent to $p \not| |A_n| = \frac{n!}{2}$. \(\square\)

§3. The Fine Structure of Orbits and Orbit Chern Classes

The method employed in Section 2 leads to a refinement of the orbit Chern classes, a tool introduced in [6] for constructing invariants. (We make use of several standard constructions for permutation representations, and refer to [8] for basic facts about permutation representations.) To explain this, suppose that G is a finite group and Ω is a finite transitive G set. A **system of imprimitivity** for Ω is a partition of Ω,

$$\Omega = \Omega_1 \sqcup \ldots \sqcup \Omega_e,$$

that is preserved by the action of G. This means, for each $g \in G$ and $1 \leq i \leq e$, that $g(\Omega_i) = \Omega_{g(i)}$, where $1 \leq g(i) \leq e$, and the correspondence $i \mapsto g(i)$ is a permutation of the set $\{1, 2, \ldots, e\}$. The subsets Ω_i, $i = 1, \ldots, e$, are called the **blocks** of the system of imprimitivity. Since G acts transitively on Ω, it is easy to see that the blocks all have the same number of elements, say c. In fact, if $K = G_{x_1}$ is the isotropy group of a fixed point $x_1 \in \Omega_1$, then Ω may be identified with the G-space G/K, and the blocks with the cosets of K in H, where

$$H = \{\ h \in G \mid h(\Omega_1) = \Omega_1 \}.$$

So a system of imprimitivity for Ω corresponds to a chain of subgroups $K < H < G$.

Next, let $\rho : G \hookrightarrow GL(n, IF)$ be a representation of a finite group G and $B \subset V^*$ an orbit of G in the space of linear forms V^* on $V = IF^n$. Suppose the permutation representation of G on B is imprimitive and

$$B = B_1 \sqcup \cdots \sqcup B_e$$

is a system of imprimitivity for B. For each integer j, $1 \leq j \leq c$ introduce the polynomial

$$\varphi_{B_j}(X) = \prod_{b \in B_j} (X + b_j) \in IF[V][X]$$
and write
\[\varphi_{B_j}(X) = \sum_{r+s = c} c_r(B_j)X^r, \]
where \(c \) is the block size. Call the forms \(c_r(B_j) \) the **block Chern classes**. If \(\mathbf{l} = (i_1, \ldots, i_c) \) is a multiindex of nonnegative integers let \(\sigma_1 \) denote the \(\mathbf{l} \)-th polarized elementary symmetric polynomial in \(e \) vector variables, each of dimension \(c \). Then
\[c_i(B_1, \ldots, B_e) := \sigma_1(c_i(B_1), \ldots, c_i(B_e)) \in \text{IF}[V]^G, \]
and is called the \(\mathbf{l} \)-th **Chern class of the system of imprimitivity**
\[B = B_1 \sqcup \cdots \sqcup B_e, \]
or a **fine orbit Chern class** of \(B \). The proof of Theorem 2.1 shows:

Theorem 3.1: Let \(\text{IF} \) be a field of characteristic \(p \), \(G \) a finite group, and
\[\{1\} = G_k < G_{k-1} < \cdots < G_1 < G_0 = G \]
a chain of maximal subgroups in \(G \), i.e., \(G_i \) is a maximal subgroup of \(G_{i+1} \) for \(i = 1, \ldots, k-1 \).
Let \(e_i = |G_i : G_{i+1}| \) for \(i = 0, \ldots, k-1 \). If
\[p > \max\{e_{k-1}, \ldots, e_0\}, \]
then, for any representation \(\rho : G \to \text{GL}(n, \text{IF}) \), the ring of invariants \(\text{IF}[V]^G \) is generated as an algebra by fine orbit Chern classes.

Let us illustrate this with an example. The example is chosen because it is a generic example (see [3] Section 3.2 Example 1 and the discussion preceding Example 2) of a ring of invariants that is not generated by orbit Chern classes.

Example 1 (L. E. Dickson): Consider the subgroup of \(\text{GL}(2, \text{IF}_3) \) generated by the matrices
\[A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \in \text{GL}(2, \text{IF}_3). \]
Set
\[C = AB = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}. \]
Since
\[A^2 = B^2 = C^2 = -I, \]
where \(I \) is the identity matrix, the subgroup of \(\text{GL}(2, \text{IF}_3) \) generated by \(A \) and \(B \) is isomorphic to the quaternion group \(Q_8 \) of order 8.

Inspection of the 8 matrices in \(Q_8 \) shows that every nonzero vector in \(\text{IF}_3^2 \) occurs exactly once as a first column, so that \(Q_8 \) acts transitively on \(\text{IF}_3^2 \setminus \{0\} \). There are only two orbits of \(Q_8 \) acting on \(V^* \), and they are \(\{0\} \), and \(V^* \setminus \{0\} \). The only Chern classes are therefore the two Dickson polynomials
\[d_{2,1} = \frac{xy^9 - x^9 y}{xy^3 - x^3 y^3}, \quad d_{2,0} = (xy^3 - x^3 y)^2, \]
where \(\{x, y\} \) is the dual of the canonical basis of \(\text{IF}_3^2 \). These polynomials cannot generate \(\text{IF}[x, y]^{Q_8} \), which therefore is not generated by ordinary orbit Chern classes.
Denote by Ω the orbit $V^* \mod \text{char} 8 \mod \text{char} 9$ of G. This orbit is imprimitive, and the system of imprimitivity corresponding to the subgroup $\mathbb{Z}/4$ in $\mathbb{Q}/8$ generated by A consists of the two blocks $\Omega_1 = \pm x, \pm (x+y)$, $\Omega_2 = \pm x, \pm (x-y)$.

Each block has two nonzero block Chern classes:

$c^2(\Omega_1) = -(x^2 + y^2)$
$c^4(\Omega_1) = x^2y^2$
$c^2(\Omega_2) = (x^2 + y^2)$
$c^4(\Omega_2) = (x^2 - y^2)^2$.

These give the following fine Chern classes for the orbit Ω:

$\Phi = c^4(\Omega_1) + c^4(\Omega_2) = (x^2 + y^2)^2$
$\Theta = c^4(\Omega_1)c^2(\Omega_2) + c^2(\Omega_1)c^4(\Omega_2) = -(x^2 + y^2)(x^4 - y^4)$.

There is another system of imprimitivity for Ω corresponding to the subgroup $\mathbb{Z}/4$ generated by B, whose blocks are $\Lambda_1 = \pm x, \pm (x-y)$, $\Lambda_2 = \pm y, \pm (x+y)$.

From the block Chern classes of this system of imprimitivity we obtain the fine orbit Chern class $\Psi = c^4(\Lambda_1) + c^4(\Lambda_2) = x^2(x-y)^2 + y^2(x+y)^2$.

The fine orbit Chern classes $\Phi, \Psi \in \mathbb{Q}/8$ form a system of parameters and (see the discussion in [3] of Example 1 in Section 3.2)

$\mathbb{Q}/8 = \mathbb{Q}[\Phi, \Psi] \oplus \mathbb{Q}[\Phi, \Psi]' \Theta$.

Therefore the fine orbit Chern classes Φ, Ψ, Θ generate $\mathbb{Q}[x, y]$ as an algebra.
References

Larry Smith
School of Mathematics
University of Minnesota
Minneapolis, MN 55455
USA
e-mail: SMITH@MATH.UMN.EDU

and

AG-Invariantentheorie

Mathematisches Institut der Universität
D 37073 Göttingen
Federal Republic of Germany
e-mail: LARRY@SUNRISE.UNI-MATH.GWDG.DE