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ABSTRACT. Simple combinatorial proofs are given of various Lambda
algebra results, mostly due to the MIT school [B-C-K&, Cu1, Pr], but
also the unstable � composition formulas of Wang, Mahowald and Singer,
which imply the folklore � EHP sequence.

1. INTRODUCTION

Mahowald [Ma1, Ma2] initiated a “low-tech” approach to the unstable
Adams spectral sequence, using a purely algebraic treatment of the Lambda
algebra

�
, and ad-hoc tower constructions. However, full details have not

yet appeared. A few such details,
�

combinatorial proofs, are given here.
The power of Mahowald’s approach is shown by his [Ma1]

�
EHP se-

quence chain-level map ��� �����
	���
���������	��
, defined by composing with� �������������! �#"%$ �&	'�

. But the geometric analogue �(�*) �,+-� �."%$ � + �
is only

composition with the Whitehead product /10 �32 0 �54 under the double suspen-
sion. His computation [Ma1, Prop. 3.1] of the Hopf invariant of � is the
the

�
analogue of the author’s result [Ri1]. Mahowald’s � uses “Adams-

filtration better” unstable
�

compositions, due to Wang [Wa], and codified
(without proof) by Singer [Si]. Singer’s formulas are proved here, first:

Proposition 1.1 (Singer). Composition in
�

restricts to an unstable com-
position pairing, written as a cup product:�76  8 �&	'�'9:�;��	<�>=?�������&	'�,2@ 9BA �

//
@DC A�E

Singer’s result follows by easy induction from the special case FHG 

of Mahowald [Ma2, Lem. 3.5], or Wang’s [Wa, Lem. 1.8.1] special case
involving

� $  I ��	J�K=?�
. Wang deduced [Wa, Thm. 1.8.4] the MIT school’s

result [B-C-K&], that
�;��	��7LM�

is a subcomplex, and his proof showed the
folklore (see Remark 3.3) result that NO� ���&	P�Q
��R� �����
	<�S
��

is a chain
map. Curtis [Cu2] first stated without proof the

�
EHP sequence, which

any careful reader could’ve deduced from these papers [Wa, Ma2, Si]:

1991 Mathematics Subject Classification. 55T15, 55Q40, 55Q25.
Thanks to Paul Burchard for the diagram package, which uses XY-pic arrows.
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Theorem 1.2. There’s an exact sequence of complexes and a chain map ��;��	��
// //

T ����	<�U
��
// //

V �;���
	<�U
��,2 �����5	<�Q
��
//

W �;��	��,2
where N and � are defined by N ���X� @ � G @ and � � @ � G � ���Y��� CZ@ , for@ �[�����]\;�U
�� , and N �&����	��!� GQ^ . � induces the cohomology boundary.

Bousfield and Kan [B-K] construct unstable cohomology compositions1,
which they proved are compatible with the geometric compositions:N 6  8`_ 6 �;��	��'9 N I ���&	<�>=ba F �c� N I �;��	��,2(1) d 8`_ 6 "e��+ � 9 d I + �#" 8`_ 6 � d 8`_ 6 "e��+ � E

Since the differential
�

of
�

preserves the
=
-degree, Proposition 1.1 im-

mediately implies an “Adams-filtration better” improvement of (1):

Corollary 1.3 (Singer). Unstable
�

composition induces the pairingN 6  8 ���&	'�'9 N I ���&	<�>=?��� N I ����	��,E
An EHPss approach to [Wa] yields the f -lines and relations on the g -

lines for N I �����&	'�?� . That’s basically how Wang (who never mentions N )
proves (cf. [Ko]) the Adams differential

� ��hY��� G h�ijh �� _ $ for
	Mk f . This

systematization of Wang’s work will appear later, as part of the author’s
work with Mahowald on f -cell Poincare complexes and Unell’s theorem.

The
�

admissible monomial basis of MIT school [B-C-K&, Pr] is proved
in section 5, verifying Mahowald’s conjecture (cf. [Ma1, p. 78]) that a com-
binatorial proof exists. Also proved (section 4) is the MIT school’s related
result, that

�
is well-defined (i.e. preserves Adem relations). In section 3,

we prove Theorem 1.2, and in section 6, we prove the Mahowald-Singer
Hopf invariant formula, and explain how [Ma1, Prop. 3.1] motivates [Ri1].
In section 7, we reprove Wang’s result on the equivalence of the admissible
and symmetric Adem relations, by Tangora’s recursion relation.

This paper is part of an investigation of geometric applications of [Ma3]
with Mark Mahowald, who I’d like to thank, especially for his guidance on
the

�
basis. Thanks to Paul Goerss for many helpful tutorials about

�
and

the uAss. Thanks to Pete Bousfield for 2 very interesting and encouraging
discussions. Thanks to Halvard Fausk, who listened to an early version of
the paper and encouraged me to write it up. Thanks to Charles Rezk, for
explaining that [Pr] is a purely algebraic treatment, using nothing of the sim-
plicial Lie algebras of [B-C-K&]. Thank to Stewart Priddy, who explained
that genealogy [C-M] strongly indicates that unstable Lambda composition
should be in the same order as composition in unstable homotopy groups.

1Actually somewhat less, due to “fringing” problems, which Bousfield says were later
overcome. Bousfield and Kan work for all spaces, not just spheres, and not actually use � ,
but a description of lnmo�qpsrut as an vYw.x group in a category of unstable y -modules.
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2. UNSTABLE LAMBDA ALGEBRA COMPOSITION PRODUCTS

The Lambda algebra
�

is generated by z �*{ �}|�~U^3� , and has relations the
admissible Adem relations

(2)
���5� � ��"%$�"e���:� ��� i � 	�a>�DaK
� � ���,"e� _ � � � �,"%$�" � 2 �'2�	 ~U^ E

A monomial
�b��\�$,2.E.E.E,2�\ 6 � is admissible iff

\}{����]\�{ _ $ for

K� | � F .

Adem relations reduce the right-lexicographical order, while fixing F and
the

=
-degree

\�$q���#�#�]�U\ 6 � F , so by induction the admissible monomials
span. The MIT school [B-C-K&] showed the harder fact that

�
has a basis

of admissible monomials, and also that
���&	'�;L��

is a subcomplex, where���&	'�
has the basis of admissible monomials

�%����\�$,2�E.E.E�2�\ 6 � with
\e$��B	

.
To motivate Proposition 1.1, let’s ask how we could construct Bousfield

and Kan’s unstable compositions (1) in
�

. Their geometric compatibility
(same order e.g.) shows us we need

�b��\X$�2.E.E.E�2�\ 6 � to belong to
���&	'�

, for
any sequence

��\�$j2.E.E.E�2�\ 6 � satisfying the inequalities\e$��:	 \ � �K	<��\e$ E�E.E \ 6 �K	<��\e$��U�#�#���B\ 6 _ $�E
And it’s not hard to see this is true, because Adem relations preserve these
inequalities, and then we’d have

����	���������	D�H=�a F �7LU�;��	'� . But we note:
(1) Left multiplication by

� _ $ is more or less
�
, and this [B-K] type

unstable composition isn’t enough to prove
�;��	'�

is a subcomplex.
(2) Performing an Adem relation improves the above inequalities.

This leads us to stronger inequalities:

Definition 2.1. A monomial
����\Y$,2�E.E.E�2�\ 6 � is called

	
-pseudo-admissible if\�{b�B	P� | aM
��:�K��� { \ � for all


�� | � F .
The argument sketched above now gives a proof of Proposition 1.1 above.

Formally, the proof follows easily from a definition and two lemmas. Our
main workhorse is

Lemma 2.2. If the monomial
����\Y$�2.E.E.E�2�\ 6 � is

	
-pseudo-admissible, then�b��\e$j2.E.E.E�2�\ 6 � belongs to

���&	'�
.

This wouldn’t be useful without the converse, which we prove first:

Lemma 2.3. If ��G ����\�$,2.E.E�E�2�\ 6 � is admissible with
\�$���	

, then � is	
-pseudo-admissible.

Proof. We show by induction that
\�{��K	�� | aJ
X���U�j� { \ � for |bG 
�2.E�E.E�2 F .

We’re given this inequality for |bG 

. Assuming it’s true for | � F , we have\�{s"%$��Q�
\}{ G \�{3��\}{��K	<� | aK
�� � �j  { \ � �K	<� | � � ��  { \ � E¢¡
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Proof of Lemma 2.2. We’ll first show Adem relations preserves
	

-pseudo-
admissibility. That is, performing an Adem relation on any inadmissible
pair in the monomial �DG �b��\Y$j2�E.E.E�2�\ 6 � writes � as a sum of terms (possibly
none), each of which is still

	
-pseudo-admissible.

Suppose for some | � F that
��\Y2�£,� �¤G ��\}{¥2�\}{¦"%$!�

is inadmissible. The
Adem relations (2) write

�X§.�Y¨
as a sum of admissibles

�*§o©ª�Y¨`©
, where each\�«%�:£7a>\

. We’ll show that all these monomials are
	

-pseudo-admissible:� « G ��\e$,2.E.E.E�2�\�{ _ $j2�\ « 2�£ « 2�\�{s"%$,2.E�E.E�2�\ 6 �
Let ¬�G 	�� | a�
­�U\e$q�®�#�#���Q\�{ _ $ . Now

£¯� ¬ �U\°�±

, since

��\Y2�£,�
is ¬ -pseudo-admissible, and

\ « �®£²aB\
, so we have

\ « �®£�a:\[� ¬ . By
Lemma 2.3,

��\}«`2�£�«s�
is ¬ -pseudo-admissible.

So Adem relations preserve
	

-pseudo-admissibility. Eventually we’ll
reach admissible form, and have �³G ��´

where each monomial
´

is both
admissible and

	
-pseudo-admissible, Hence each

´
belongs to

����	��
.

¡
We just used a version of the next result in the proof above:

Lemma 2.4. Suppose �:G ����\�$j2.E.E�E�2�\ 6 � is
	

-pseudo-admissible, and let= G \e$7�µ�#�#�3�®\ 6 � F . Then for any monomial
´

, the product � �*´ is	
-pseudo-admissible iff

´
is
�&	<�>=?�

-pseudo-admissible.

Proof. Write � �*´ G ����\�$�2.E.E.E�2�\�¶j�
, for ·�~¸F . Then � �X´ is

	
-pseudo-

admissible iff for all | such that F � | � · , we have\}{��K	<� | aK
��:� �j� { \ � G 	<�>='� | a F aK
�� �6 �
��� { \ � E¹¡
Singer’s result now follows immediately from Lemmas 2.3, 2.2, and 2.4:

Proof of Proposition 1.1. It suffices of course to show that� 6  8 ��	��q�#����	<�º=?��LM����	��
Take admissible monomials

�*�­�[� 6  8 ��	��
and

�%»°�[�;��	��;=?�
. By Lemma 2.3,� and

´
are

	
- and

��	D�¼=?�
-pseudo-admissible respectively. Then � �
´ is

	
-

pseudo-admissible, by Lemma 2.4. Hence � �j´(�[���&	'� by Lemma 2.2.
¡

Remark 2.5. Mahowald and Wang’s special cases of Singer’s Proposition 1.1
were proved by tricky double inductions. Our induction is the simple right-
lex induction that proves the admissibles span

�
. Harper and Miller [H-M]

port Mahowald’s argument to odd primes, and their FBG 

result easily

implies by induction on F a result they unfortunately do not state, that� 6  8` ½ ���5	<�Q
��q�#�;���
	¾�U
��>=���¿��7LM�;���
	<�U
��,2
where c is the Cartan degree (the number of À ’s). They make an error,
trying to deduce Corollary 3.1 below from

� 6  8Á��	������;��	³�B=ca F �ÂL±�;��	��
,
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their [H-M, (1.17)], and this weakening of Proposition 1.1 isn’t good enough.
Their (1.17) doesn’t even imply Bousfield and Kan’s cohomology compo-
sitions (1), as

�
doesn’t preserve

=ba F , but only
=
. But even with a mistake,

Harper and Miller’s “Adams-filtration better” proof that
���&	'�

is a subcom-
plex should establish the depth of the result, and also the

�
EHP sequence.

3. THE LAMBDA ALGEBRA EHP SEQUENCE

We now give our combinatorial proof that
���&	'�

is a subcomplex. The
proof is the same as Wang’s [Wa] and Harper and Miller’s [H-M], except
they leave to the reader the statement and proof of Proposition 1.1.

Corollary 3.1. For
	 ~Q^ , we have

� �;��	<�U
��7LM���&	<�Q
��
.

Proof. We must show that
� ���X�u´��7���;��	b�P
��

, for any admissible monomial´Ã�Ä�����5	��Å
��
. We have

� ���Y��´�� G � �����]�j´(�®��� � �o´'�,2
by the Leibniz

rule. We can assume that
� �o´'���¼�;���
	P�O
��

, by induction on F , and hence�Y� � �o´'���[���&	<�Q
��
. So it suffices to show that� �����]�q�#�����
	<�Q
��7LM�;��	<�U
��,E

We’ll show one dimension better. Clearly

(3)
� ���Y��� G � ��Æ i � 	�a��� � ��� _ � � � _ $7�[� �! �#"%$ �&	'�

Then
� ���Y�}��´Ç�����&	'�

by Proposition 1.1:� �! �."%$ ��	��q�#�����5	<�Q
��7LU���&	'� ¡
Now we develop the

�
EHP sequence of the MIT school [Cu1]. Note that

this follows from our proof of Corollary 3.1, but not the statement itself.
Clearly the inclusion È�� �;��	'�Â� ����	¯�®
#�

is a chain map, so we have
some EHP sequence, but we want to a better grip on the quotient complex���&	<�Q
��?É
���&	'�

. Recall that the Hopf invariantN�� ����	<�U
���� �;���
	<�U
��
is defined to annihilate È , and N ���X��´'� G ´

, for admissible monomials´Ç�������
	¾�Q
#�
. Now we have

Corollary 3.2. The linear map NO� ���&	D�K
���� �;���
	°�K
��
is a chain map.

Proof. It suffices to show
� N GµN � holds for an element

�X�3´
, for an ad-

missible monomial
´��Ê�����5	<�Q
��

, since
� ���&	'�7LU���&	'�

, by Corollary 3.1.
But replicating the proof of Corollary 3.1, we haveN � ������´�� GSN � � ��������´P�:��� � �Ë´��!� GQ^ � � �o´�� G � N �����u´'�
since

� ���Y�}��´Ç�����&	'�
, and

� �o´'�7�[�����
	<�Q
#�
.

¡
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Mahowald’s description [Ma2] of � is now immediate, and we’ve proved
Proposition 1.2 of the introduction.

Remark 3.3. Ravenel and Kochman [Ra, Ko] implausibly assert that Corol-
laries 3.2 and 3.1 follow immediately from Formulas (2) and (3). Curtis and
Mahowald [C-M, p. 128] implausibly offer no proof or citation for these 2
results. Curtis [Cu1, sec. 11] fails to prove that N is a chain map, first
by merely citing [Cu2], and second by an error in his proof that N is in-
duced by the geometric Hopf invariant. Curtis claims that a sum of maps
induce an isomorphism on È $ terms, but clearly each map induces zero, as
they’re all Whitehead product, with positive Adams filtration. I give Curtis
credit for his bold attempt, and I think a version of his argument works with
Mahowald’s [Ma1] “mapping cone” construction for an unstable Adams
resolution over the fiber of a map, in this case ÈH� + � � ) + �#"%$ , although I
think we’d have to abandon the Lower Central Series filtration.

Bousfield and Curtis [B-C, Rem. 5.3] construct a long exact cohomology
EHP sequence, using unstable Ì -modules, but I believe that one cannot
glean a proof of Theorem 1.2 from their argument, but instead, that they
use [B-C, Lem. 3.5] Corollary 3.2. Singer [Si, top p. 380] reconstructs
the long exact cohomology EHP sequence, and it’s clear that his proof thath �%)�Í 6 ��+ � �Î� Í 6 _ $ ��+ � � _ $ � is a chain map uses Corollary 3.2, which of
course he could’ve proved himself. Wang [Wa, Prop. 1.8.3] “immediately”
deduced that

� ���Y�}�-�������
	P�S
���LS���&	'�
, and therefore Corollary 3.1, from

his special case
� 6  8 ��	����}��ÏÄLÅ�;��	��

for Ð ��	��K=
of Proposition 1.1. I

contend that Wang’s leap shows the importance of stating Singer’s result,
from which his result does follows immediately. Wang could easily have
deduced Corollary 3.2 from his Prop. 1.8.3, and he point out its obvious
corollary, that N �ªÑ%�7�������
	¾�Q
#� is a cycle if

Ñ[�[�;��	<�Q
#�
is a cycle.

4.
�

PRESERVES THE ADEM RELATIONS

Before proving the
�

admissible monomial basis, we’ll prove an easier
result of the MIT school [B-C-K&, Pr]:

Proposition 4.1. The differential
� � ��� �

is well-defined.

Proof.
�

is a tensor algebra modulo the 2-sided ideal generated by the
Adem relations. The Leibniz rule defines

�
on the tensor algebra, but we

must show that
�

sends Adem relations to the 2-sided ideal. To prove this,
we’ll expand the tensor algebra to include

� _ $ , well-known to be related to�
, and use what Pete Bousfield calls “pension operators”, i.e. selfmaps of

tensor powers which preserve Adem relations.
Let Ò be the Ó É]� vector space with basis z �u� � � ~ aÎ
 � . Let Ô be

the selfmap of Ò given by Ô ���u�5� G ���,"%$
. Define the selfmap of ÒÖÕ � by
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��º
�9 Ô . As Mahowald recommends (cf. [Ma1, p. 78]), we’ll use
the original [B-C-K&] symmetric Adem relations, for

� ~ aÎ

,
	 ~U^ :

(4) / �'2�	*4 �¤GQ¬ � �����79K� � ��"%$Á� G �{s" �!× � � 	 | � ���,"e{39K� � �,"%$�" � � Ò Õ � E
The (original [B-C-K&] symmetric) differential on

�
comes from

� G aÖ

:

(5)
� �����}� GÅ/ aÎ
�2�	<�Q
�4u�:� _ $?���­�:���}� _ $7� Ò Õ � 2 	 ~U^ E

Now define the selfmap Ø G Ô 9 Ô � of ÒÎÕ � . Then Ø preserves Adem
relations as well, and we haveØ � / �'2�	*4ª� GÅ/ �n�Q
�2!	%4�2 ¬ � / �'2!	%4`� GÙ/ �'2�	P�Q
�4�E
It’s well known that all the Adem relations are obtained from / aÖ
]2.aÖ
�4 by
applying powers of Ø and ¬ . Call � � G 
�9O


the identity selfmap of Ò Õ � .
Now we’ll define selfmaps of Ò Õ�Ú , and we’ll apply them to�}��9M� � �,"%$�9M��Û&��" Ú GÅ/ �'2 ^ 4u9K��Û&��" Ú G �}��9 / �,�n�U
�2 ^ 4�E
We’ll also call ¬ the selfmap ¬ÜGQÔ 9 � � �Q
�9 Ô 9S
�� � � 9 Ô of Ò Õ�Ú , so¬ÃGS¬ 9O
�� � � 9 ÔÂG 
R9 ¬ � Ô 9 � � E
We venture into new territory with the selfmap È of Ò Õ�Ú defined byÈ�GQÔ 9 Ô � 9O
�� Ô 9O
R9 Ô � �U
�9 Ô 9 Ô �GQØ 9O
�� ¬ 9 Ô � G 
�9 Ø � Ô 9 ¬ � E
We’ve written both È and ¬ as the sum of 2 commuting operators on ÒDÕ�Ú ,
in 2 different ways, so the binomial theorem computes powers of ¬ Ï andÈ � , just as with / ��2�	%4 above. Let’s define, for

� ~ aÎ

,
	q2 ÐÝ~U^ , elements/ ��2�	q2 Ð 4 �¤GO¬ Ï È � � / ��2 ^ 4u9M��Û&�," Ú � GO¬ Ï È � ���}�79 / �j�°�U
�2 ^ 4`�7� Ò Õ�Ú E

By the binomial theorem, / �'2!	q2 Ð 4 has 2 expressions. Equating them gives

(6)
�{¦" �!× �  6 " 8 × Ï � 	 | � � Ð F � � / �n� | 2ËÞ;� F 4�9M�YÛ&�," Ú " � � " 8�Î�}�," � " 8 9 / �,�n�Q
�� | 2j��ÞÂ� F 4 � GQ^ E

Now we specialize to
� G aÖ


, and assume
	Çk ^ , and project this equation

onto the positive part of Ò Õ�Ú . I.e. we throw out the terms containing
� _ $ .

This will be our equation for why
�

preserves Adem relations.
The terms in Equation (6) containing

� _ $ come from either
Þ G = GO^ or|bGS^ , and add up to� _ $Á9 / 	qaÎ
�2 Ð 4`� / 	baÖ
�2 Ð 4ª9Î� _ $�� �6 " 8 × Ï � Ð F � � / aÎ
�2�	<� F 4�9M� � �." 8`_ $���Y�." 8`_ $'9 / aÎ
�2j�
	<� F 4ß� E
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By formula (5), the Leibniz rule, and switching F and
=

in the second part,
the positive projection of this expression is�6 " 8 × Ï � Ð F � � � �����#" 6 _ $o�'9M� � �." 8`_ $���Y�." 8`_ $�9 � ��� � �." 6 _ $o�?� G � � / 	�aM
�2 Ð 4`�,2
So the positive projection of Equation (6) shows, for

	�k ^ 2 Ð ~Ü^ , that� � / 	�aK
�2 Ð 4`� is the sum of the positive Adem relations

(7)
�{s" �?× �  6 " 8 × Ï{ Æ i  �à �  8âá�ã× à i  i á

� 	 | � � Ð F � � /ä| aK
�2¥Þ;� F 4u9M� � � " 8`_ $��� � " 8`_ $'9 /å| aK
�2j��ÞÂ� F 4`� ¡
5. THE

�
ADMISSIBLE MONOMIAL BASIS

Let æ L Ò be the subvectorspace with basis z �u� � � ~¢^3� , and letç L æ±Õ � be the subvectorspace Ó É�� z3/ �'2!	%4 � �'2!	 ~Å^u� . Then with � the
2-sided ideal generated by

ç
, we have� GUè � æ �?É � 2 �¾GMè � æ �q� ç � è � æ �

We now prove the MIT school’s result [B-C-K&, Pr]

Proposition 5.1.
�

has a basis of the admissible monomials.

First we prove an analogue of Proposition 4.1:

Lemma 5.2. For
�'2�	b2 ÐÝ~U^ , we can rewrite

�u��9 / �,�­�H
��[	q2 Ð 4 as a sum�}�79 / �j�°�U
���	q2 Ð 4 G � { �Yéjê�9 / ��{¥2�	*{ß43�B� � /äë � 2 Ð � 4�9M�Yì�íÂ� æ Õ�Ú
where for each | , the triple

�&ÑX{Ë2���{�2j�,�e{X��
²�K	%{ª�
has lower right-lex order

than
�s�'2��,�Ö�Q
���	b2 g �n� f �B�
	<� Ð � .

Proof. Equation (6) simplifies to

(8)
�{s" �!× �  6 " 8 × Ï � 	 | � � Ð F � �}�," � " 8 9 / �j����
î� | 2j��ÞR� F 4�� ç 9 æ L æ Õ�Ú E

The
� | 2 F � -term produces the triple

�s�c�°Þ��P=j2j�,���Ê
�� | 2 g ��� f ���5	�� F � , and
the maximum right-lex order occurs uniquely at F<GÄÐ and |­G 	

, which
corresponds to the term

�u�79 / �,�n�U
7�>	q2 Ð 4 . ¡
Remark 5.3. We proved what we will use below, but here’s a more straight-
forward analogue of Proposition 4.1. Define the excess of

��\Y2�£,�
to be£'a[�]\�a(


. Then the excess of
�¦�­��Þc�Ê=j2j�,�­�H
�� | � is | aÊ��Þ�aÊ�5=��M	 , and

the maximum
	

is achieved only for
Þ G = GÜ^ . So Formula (8) rewrites���}9 / �,���¯
��°	q2 Ð 4 as an element of

ç 9 æ plus a sum of elements
�%§]9 / £#2�¿�4
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with
£�a:�]\°aS
<�O	

. By induction
���²9 / �,�D�O
��:	q2 Ð 4 is an element ofç 9 æ plus a sum of elements

�*§c9 / £#2�¿�4 with each
��\X2�£��

is admissible.

Proof of Proposition 5.1. The problem is that 2-sided ideal � is “too big”.
We first define a sub-vectorspace

´
of � so that è � æ �!Éu´

has a basis of the
admissible monomials.

´
will be the sub-vectorspace � that’s defined by

the algorithm of performing an Adem relation on the left-most inadmissible
pair of a monomial. Formally, let ï L � be the subvectorspace with basisz �b��\e$j2.EâEðEâ2�\ 6 � / ��2�	%4 � ��2�	q2 F�~U^ , ����\e$,2.EâEðEâ2�\ 6 � admissible,

�Ê�Q�]\ 6 if F k ^3� 2
and define

´ Gñï � è � æ �
. It’s obvious that è � æ �!É�´

has a basis of the
admissible monomials. We’ll use to Lemma 5.2 to show �¾G ´

.� is spanned by spanning elements@ G ����\e$,2.EâEðEâ2�\ 6 � / �'2�	%4`ò�2 \�{¥2��'2!	q2 F�~U^ 2jòÊ� è � æ �jE
By abuse of notation, let’s call F the Adams filtration of @ . We’ll say that @ is
an admissible spanning element if

��\Y$j2�E.E.E�2�\ 6 2��*� is admissible. Of course,@ �Ä´
if @ is admissible. If @ is inadmissible, we’ll perform reductions

until @ is a sum of admissible spanning elements, and then @ �H´ .
We need an ordering on the spanning element, derived from the orderings

Priddy [Pr] and Mahowald [Pr, Ma1, Prop. 5.5] used in their cohomological
proofs of this

�
basis result. We order the spanning elements @ of a given

word-length óÝGSF �:�²� · and a given stem degree\e$'�Q�#�#�#��\ 6 �Ç�n�O���,�n�Q
���	��'�B£�$'�Q�#�#����£�¶
first by the Adams filtration F and then by right lexicographical order on theó -tuple

��\e$,2.E.E.E�2�\ 6 2��'2j�,�n�S
��B	b2�£�$,2.E.E.E,2�£�¶,� . We can now induct because
there are only a finite number of elements with lower filtration than @ . We’re
going to perform a sequence of reductions until @ is a sum of admissible
spanning elements, and then @ �¼´ . Our two reduction moves are:

(1) Apply a symmetric Adem relations /åë 2!	%4 to any inadmissible pair in����\e$j2�E.E.E�2�\ 6 �
(2) Apply a higher Adem relations ¬ Ï È � � ë 9Å� ë �µ
Î9 g]ë � f � to\ 6 / ��2�	%4 , if

��\ 6 2��*� is inadmissible.

We’ll see that both moves strictly lower the filtration order. It will be ob-
vious that both moves preserve the word-length and the stem degree.Then��G ´

by the same inductive argument that proves why admissibles span�
: keep applying moves in any order until (by finiteness) we have a sum of

admissible spanning elements.
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Let’s illustrate the type (1) move for F;G � . If
��\Y$j2�\ � � G � ë 2j� ë �:
-� Ð �

is inadmissible, then@ GÅ/åë 2 Ð 4¥� / �'2�	*4ªò%�'� �{s" �?× Ï  ��� Ï � Ð | � �b� ë � | 2j� ë �U
���Þu� / �'2�	*4ªò�2
so @ is a spanning elements Adams filtration ^ , plus a sum of terms with
lower right-lex order.

Our type (2) move uses Lemma 5.2 to rewrite @ G ����\X$�2.EðEâEâ2�\ 6 � / �'2!	%4`ò as@ G � ����\e$j2.EâEâEð2�\ 6 _ $j2!Ñ%� /åë 2 Ð 4ªò
with each triple

�&Ñ�2 ë 2j� ë �Å
�� Ð � lower than
��\ 6 2��'2��,���Ù
���	��

in the
right-lex order. Hence each term on the RHS has lower filtration than @ ,
and our type (2) lowers filtration.

By the above inductive argument, we use moves of type (1) or (2) in any
order to write @ as a sum of admissible spanning elements, so @ ��´ .

¡
Note that we could’ve proved Proposition 4.1 by the technique of this

section, by merely replacing æ with Ò . I think that the proof of Proposi-
tion 4.1 is nicer, even though it’s combinatorially more challenging.

Remark 5.4. The existence of a combinatorial proof of Proposition 5.1 was
first raised by Mahowald [Ma1, p. 78]), where he asserted that it followed
from the symmetric Adem relations (4). I interpret this as a conjecture,
which is finally solved here. Ravenel [Ra], and Curtis & Mahowald [C-M,
p. 128] assert implausibly that this result follows “immediately” from the
admissible Adem relations (2). Miller & Harper [H-M] also assert this de-
duction, but not “immediately.” The proof here was hard enough, and I can’t
imagine a proof using the admissible Adem relations. Kochman [Ko] gives
a short false proof (false proof for span, no proof for linear independence).

6. THE MAHOWALD-SINGER FORMULA FOR THE HOPF INVARIANT OF
AN UNSTABLE LAMBDA COMPOSITION

Recall Boardman and Steer’s formula [B-S, thm. 3.16] for the suspended
James-Hopf invariant

� � of a composition formula, which the author [Ri2,
Thm. 2.7] found useful. For ô � /öõ�÷ 2 õ�æ 4 , and ø � /ùõ7ú 2 õ�÷ 4 , we have� � � ô�û�ø � G � � � ô � û�õ7ø �O� ô²üJô � û � � � ø ��� /öõ � ú 2 õ�æ ü[õ�æ 4�E
It’s natural to ask for a

�
composition formula for N . Mahowald explains

that the second term
� ôDü¼ô � û � � � ø � vanishes in

�
because it has higher

Adams filtration. But unstable
�

composition, which is Adams-filtration
better than geometric composition, adds a different second term:
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Proposition 6.1 (Singer). If @ �Ê� 6  8 �&	P�Q
�� and
A��[���&	<�>=��U
��

, then

(9) ÈÖN � @nC Ab� GQÈnN � @ � C A��:+ ë i � @ � C ÈnN ��Ab�7�[�����
	<�:�]�,E
That is, the composite� 6  8 ��	<�U
��'9B���&	<�>='�Q
��¼ýaâ�����&	<�Q
�� T*Va!aË� �����
	¾�B���
is the sum of the 2 composites in the diagram� 6  8 ��	<�U
��'9B�;��	<��=��Q
�� � 6 _ $  8`_ � _ $ ���5	<�:���'9B�;��	<�º=��Q
#�
�76  �¥8 ���
	<�:���'9:�;���
	<�B�5=��:��� �����
	<�:���

//

T%V Õ $
��
�

�

�

�

�

�

�

�

�þ5ÿ�� Õ T%V
��
�

�

�

�

�

�

�

�

� ý
//ý

We’ll prove this below after some preliminaries. Mahowald proved the
special case of @ G � ���Y�]���[�7�! �."%$ ��	�� and

	
even [Ma1, Prop. 3.1]. Singer

states the general case [Si, Prop. 5.3] without proof, and indeed a proof (and
the statement) follows by a straightforward modification of Mahowald’s
proof. Our proof might seem more elegant. The F[G 


case is easy, andF k�
 follows by easy induction by the strictly associativity of the formula.
First some obvious properties of unstable

�
composition, involving asso-

ciativity, suspension naturality,
+ ë i and admissible concatenation:

Lemma 6.2. If @ �[� 6  8 �&	'� , A¼�[� 6 ©  8 © �&	P�>=?� , and � �[�;��	<�º='�º=o«â� , then@¾C �&A C�� � G � @DC Ab� C�� �Ê����	��,2È � @¾C Ab� GOÈ � @ � C È �&Aq�7�Ê����	<�U
��,2+ ë i � @DC Ab� G + ë i � @ � C + ë i ��Ab�7�[� 6 " 6 ©  �!à18 " 8 © á ���
	'�jE
For

A¼�[�����
	<�Q
��
, we have

�Y�]A G ��� C È �&Ab�7�[���&	<�Q
�� .
Proof. We must only check that all of the unstable compositions are defined,
since unstable

�
composition is just the

�
multiplication desuspended to the

appropriate sub-vectorspace
��� | ��LM� .

¡
Proof of Proposition 6.1. We’ll prove Equation (9) by induction on F , the
Adams filtration of the first argument @ .

First we’ll do FÂG 

, and be very pedantic about unstable

�
products. So@ G �Y§ , with ^ �Q\P�U	 . For

A¼�[���&	<�B\;�B���
, we need

(10) ÈÖN ���Y§ C Ab� G�� §  �]A¯�B� � §?"%$ C ÈnN �&Ab�7�[�����
	<�:���
Let’s write Ð G 	<��\��Q
 , so

A¼�Ê��� Ð �Q
#�
.
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Assume
\B�Ü	

. Write
�X§Ê�O� $  §?"%$ ��	��

, and
� � §?"%$¯�S� $  � §?" � ���
	 ��
#�

.
Then

� � §!"%$ C N �&Aq���B�;���
	¯�®
#�
, since

���
	���
��b�����]\Î�S�]� G � Ð �®

,

and N ��Ab�7�[����� Ð �Q
��
. So Equation (10) desuspends toN � È ���Y§�� C Ab� G � � §?"%$ C N �&Aq�7�Ê�����5	<�Q
��jE

Let’s write
A G �YÏ C È �ªÑ%�}� È ���e� in admissible form, for

ÑÊ������� Ð �Ç
�� ,
and

�³�[��� Ð � . Now let’s write the Adem relation for
�*§.��Ï

asÈ ���X§�� C ��Ï G ���]� � §?"%$,� È � ç §  Ï7���[���&	q�<
��,2 for
ç §  ÏK�[� �! Ïq"�§!" � �&	'�jE

Then
ç §  Ï C Ñ[�[�;��	��

, since
	�� Ð ��\��J� G � Ð �[
 , and

�X§ C �¯�[�;��	��
,

since
	P��\;�Q
 GSÐ . Then we haveÈ ���X§�� C A G ��� C È ��� � §?"%$ C Ñ%��� È � ç §  Ï C Ñ°�:�Y§ C �e�,2

soN � È ���Y§�� C Ab� G � � §!"%$ C Ñ G � � §?"%$ C N ��Ab�7�[�;��� Ð �Q
#�,E
This finishes the case

\³�B	
.

Now assume
\ G 	

. Then write
A±�M�����
	��Q���

in admissible form asA G � � �#"%$ C ÈnN ��Ab��� È �	��� , for
� �������
	¯�Q
��

. Since
�Y�}� � �#"%$ G®^ , we

have
��� C A G �Y�
� , and the case F;G 


is concluded byÈnN ���Y� C Ab� GSÈ �	��� G A��B� � �."%$ C ÈnN �&Aq�7�Ê�����5	<�:���jE
The induction step follows from the strict associativity of the RHS. Take@ 9:A�9 � �Ê� 6  8 ��	<�Q
#�'9B� 6 ©  8 © ��	<�º='�U
��'9:���&	<�>=��>= « �Q
��jE

Assuming the result for F and F « , the Adams filtrations of @ and
A

, we’ll
show it’s true for @DC A

in the first argument. Using Lemma 6.2, we haveÈnN �!� @°C Ab� C�� � GOÈnN � @DC ��A C�� �!�G;ÈnN � @ � C A C�� �:+ ë i � @ � C ÈnN ��A C�� �G;ÈnN � @ � C A C�� �:+ ë i � @ � C�� ÈnN �&Ab� C�� �B+ ë i �&Ab� C ÈnN � � ��
G � ÈÖN � @ � C A³�:+ ë i � @ � C ÈnN �&Ab� 
 C�� �B+ ë i � @ � C + ë i ��Ab� C ÈnN � � �G;ÈnN � @DC Ab� C�� �:+ ë i � @DC Aq� C ÈnN � � �jE
So Equation (9) is true with @°C A

in the first argument. This completes
our induction, since every @ �H� 6  8 ��	³�O
�� is a sum of such products. Just
write @ admissibly as @ G � �{ × i ��{ C È �&ÑY{�� , for

ÑY{��B� 6 _ $  8`_ { _ $ ��� | �±
#�
,

and we’ve proved the result for Adams filtration



and F aK
 . ¡
There are two important special cases when Proposition 6.1 desuspends.

First, when the second argument
A

desuspends, we have [Si, Prop. 5.2]

Corollary 6.3 (Singer). For @ �[� 6  8 �&	<�Q
�� and
AH�Ê����	<�º=?�

, we haveN � @DC È �&Ab�!� GSN � @ � C A¼���;���
	¾�U
��,E
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That is, letting Ð G 	<�>= , the diagram commutes:� 6  8 �&	P�Q
��'9B�;� Ð � � 6 _ $  8`_ � _ $ ���
	<�U
��'9B�;� Ð �
� 6  8 �&	<�Q
��'9:�;� Ð �Q
�� ���&	<�S
�� �;���
	<�U
��

//

V Õ����
��

���uÕ T
��

ý
//

ý
//V

We only need observe that both sides actually desuspend. Proposition 6.1
also implies the desuspension when the first argument @ desuspends:

Corollary 6.4. For @ �Ê� 6  8 �&	'� and
A��[���&	<�>=��U
��

, we haveN � È � @ � C Ab� GQÈ ��+ ë i � @ �!� C N ��Ab���������
	¾�U
��,E
As Singer explains [Si], we can now perform

�
analogues of various

geometric EHP construction that Toda, Barratt and others used.
Consider Toda’s calculation [To] of

d 6� G�� Éu
�� , generated by � � d $��,+�� .
The problem is to construct his elements � « , � « « , � « « « which are born on

+ �
,+��

, and
+ �

respectively, and are stably
� � , g�� , and ��� respectively, with

Hopf invariants  ,  � &  3Ú respectively. � « « « is a Toda bracket !#" 2 �u0 2 "%$ ,
used in the constructing the Adams selfmap [Ad]. But � « and � « « are more
mysterious, not expressed as Toda brackets.

In
�

, the � , � « , � « « , � « « « story is easy. Starting with the cycle
� � �>��� � � ,

with N ��� � � G'& �[���o
)(�� , Proposition 1.1 and Corollary 6.4 imply�Yij� � �[�;�#*��j2 N ���Xi�� � � G �î$j2� �i � � �[�;�+�}�j2 N ��� �i � � � G � � $ 2� Úi � � �[�;�#(��j2 N ��� Úi � � � G � Ú $ E
Of course, these equations are trivial to verify by hand. Note that

� Úi � �
therefore is a cycle with leading term g 
�
�
 . Compare [Ra, Ex. 3.3.11],
where g 
�
�
 is completed to a cycle by the Curtis algorithm.� Úi � � brings up an obvious corollary of Proposition 1.1 and Corollary 3.1:

Corollary 6.5. For @ �Ê� 6  8 �&	'� and
A��[���&	<�>=��U
��

, we have� � @DC Ab� G � � @ � C A�� @DC � ��Ab�7�[�;��	��,E
Now take @ G � �Y���Q� �! �#"%$ ��	��

and note N � @ � G ��	Ça±
��!�Xi
. Propo-

sition 6.1 and Theorem 1.2 immediately imply Mahowald’s result [Ma1,
Prop. 3.1]: The composition�����
	<�Q
�� Wa � �;��	'� Va � �;���
	�a:
�� Ta � �;���
	��
sends

A
to
��	�a³
��!�Xi C A��³+ ë i � � �Y�]� C N ��Ab� . Then

� � � �#"%$ GOÈ + ë i � � ����� ,
and specializing to

	
even, Mahowald observed that the composition��� g 	¾�U
�� Wa � �;���
	�� Va � ��� g 	¯aM
�� T-,a5����� g 	<�Q
��
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sends
A

to
�Xi C A�� � ����ÛË�#"%$Á� C N �&Aq� . Recall the Hilton-Hopf expan-

sion [B-S, Wh] James used for his
�
-primary exponent [Ja, Co, B-C-G&]:

(11)
� 0 � @ G @ �5� 0 � /10 ��2 0 �
4�� N � @ �,2 for @ � d I ��+ � �jE

It’s well-known that
� ���Y���

corresponds to /10 �e2 0 �
4 , and
�Xi

corresponds to
� 0 .

Assuming this, Bousfield and Kan’s (1), leads us to expect that left/right
composition with

�Xi
corresponds to left/right geometric composition by

� 0 .
Mahowald then observed the following result:

Proposition 6.6 (Mahowald). The composition��� g 	¾�U
�� Wa � �;���
	�� Va � ��� g 	¯aM
�� T-,a5����� g 	<�Q
��
induces a selfmap of N I!��� g 	<�Q
#� , which is È �R� N � � �&Aq� G Ab�Xi .
Proof. We only need to prove the

�
analogue of Equation (11). Singer [Si,

Thm. 4.1] proves the full
�

analogue of the Barratt-Toda commutation for-
mula [To]: for . � d Ïq"�§.+ § and / � d �#"�§�+ ¨ we have

. � / aK�ÁaÎ
�� ��Ï / � .�G�/ 
.§?"�¨ _ $,2.
.§?"�¨ _ $o43� N � . � ü�N � / ��� d Ïq"e�#"�§?"�¨Á+ §!"�¨ _ $ E
We’ll only prove a special case. For a cycle . �[���¦�n�Q
�� , we’ll show�Yi C . � . C �Yi G � �����,"%$?� C N � . �7� N I �;�s�n�Q
��
To prove this, write . admissibly as .ÙG �u� ú �'0

, for
0 �µ���¦�*�

andú �[�����,�Î�:
��
. Since . is a cycle, ú must be a cycle, as Wang (who didn’t

use N ) observed [Wa, Thm. 1.8.4]:
� úSG � N � . � GSN � � . � GSN � ^ � GO^ .

By Equation (5), commutation with
� _ $ is the boundary map

�
:� .�GÅ/1. 2j� _ $Ë4�� è � Ò �,E

Now we’ll extend our operator ¬ to è � Ò � , so ¬ satisfies the Leibniz rule,
and ¬ �����5� G ���,"%$ . Writing ¬ � @ � G @ « , we have� � . � « GÅ/1. 2j� _ $Ë4 « GÙ/2. « 2j� _ $Ë4u� /1. 2��Xi!4 G � � . « �'� /1. 2j�Yi�4�� è � æ �,E
We now pass to

�
, since ¬ , as an operator on è � æ �

, preserves Adem rela-
tions, i.e. ¬ � / \X2 Ð 4ª� GÙ/ \Y2 Ð �U
�4

. Since . is a cycle, i.e.
� .�GS^ , that’s� � . « � G�/2. 2j�Xi�4 G �Xi . � . �Yi��[��E

We need to show
� � . « � is cohomologous to

� ���u�,"%$Á� C N � . �7�Ê���s�n�U
�� .
Differentiate the defining equation for . and apply the boundary map

�
:

.�G �}� ú �30
. « G �}�,"%$ ú �:�}� ú « �40 «�Xi . � . �Xi G � � . « � G � �����,"%$Á� ú � � ���}� ú « �40 « �7�[��2

(12)

since
� � ú � GS^ . We’ll show that

����� ú « �40 « ���[�;�s�n�Q
��
, because

(13) Ø �[������� G65 Ø « �[�����Î�U
��
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To see this, take an admissible monomial Ø G ����\Y$,2.E.E.E�2�\ 6 ����������� . ThenØ « is a sum of F terms, each of which is either admissible or zero, since�X§�� � §!"%$ GS^ . So the first term
����\�$��>
�2�\ � 2.E.E�E�2�\ 6 �7�[�����­�>
�� , and the re-

maining terms of the sum Ø « belong to
�������

. This proves implication (13).
Thus

0Ö«*�[���¦�²�¼
��
and ú «*�[�;���,������� , so

�}� ú « G �}� C ú «*�[���¦�²�¼
�� ,
by Proposition 1.1. So Equation (12) now reads�Yi . � . �Yi87 � �����,"%$?� ú �[���¦�°�U
��,E
Since N � . � GQú , we’ve proved our formula: For any cycle . �[���¦�n�Q
�� ,�Xi C . � . C �Xi G � ���}�,"%$Á� C N � . �7� N I ���¦�Ö�Q
��jE
Now recall È �b� N � � �&Aq� G �Xi C AD� � ���YÛË�."%$?� C N ��Ab�7�[��� g 	Ö�:
�� . ¡

Mahowald then conjectured the geometric analogue of Proposition 6.6:

the composite ) Ú + ÛË�#"%$:9 à W áa�aYaß� ) + � � Va � ) + ÛË� _ $ T ,a5� ) Ú + ÛË�#"%$ is homotopic
to the H-space squaring map on )²Ú . The author [Ri1] proved this conjec-
ture, which implies the following infinite statement in homotopy groups:

(14)
� d � + ÛË�#"%$ L È � � d � _u� + ÛË� _ $ 
 2 for

� ~Qf E
[B-C-G&] shows that (14) is not due to James or Selick [Ja, Se], even
though (14) does not improve on the James-Selick

�
-primary exponent.

7. SYMMETRIC AND ADMISSIBLE ADEM RELATIONS

We’ll prove Wang’s result [Wa, Thm. 1.6.1] that the admissible Adem
relations (2) are equivalent to the original [B-C-K&] symmetric Adem rela-
tions (4). First We’ll prove the MIT school’s result [B-C-K&] that

� � GO^ .
Lemma 7.1.

� � ���Y��� GO^ ��� , for
	 ~U^ .

Proof. We’ll use the symmetric Adem relations, and show even more, that� � ���Y§��
vanishes in the tensor algebra. By formula (5), for

	 ~Q^ , we have� ���Y��� G �{s" �?× �#"%$  { � Æ i � 	<�S
| � �Y{ _ $Á� � _ $�E
Then we instantly derive

� � ���Y��� GS^ . Using the Leibniz rule� ���Y{ _ $Á� � _ $Á� G � ����{ _ $?�?� � _ $��:��{ _ $ � ��� � _ $o�,2� � �����}�
is the sum of two terms, the first of which is�6 " 8 " �!× �#"%$  6 8 � Æ i � 	P�Q
F 2!=j2ËÞ*� � 6 _ $?� 8`_ $?� � _ $j2
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as we see by using the binomial identity � �."%${ 
 � {6 
 G � �."%$6  8` � 
 , where as usual,� �#"%$6  8` � 
 G ��	n�:
��<;1É�� F ;?==;ËÞ>;¤� . But the other term, arising from
�X{ _ $ � ��� � _ $o� , is

equal, so the sum
� � �����}�

is zero.
¡

Remark 7.2. È � arose in a way showing the power of the symmetric formu-
las: Suppose

�s�'2�£��
is inadmissible. Then

�3�#�X¨o� � ¨&"%$ GQ^ since
�X¨o� � ¨&"%$ GO^ ,

but perform the Adem relation
�u�5�Y¨ G �¢��é5��ì

first. Each pair
���*2j�]£c�O
��

is inadmissible, so perform an Adem relation on each one. The
�

basis
requires this sum to vanish in

�
, but why? Using the admissible formulas,

this isn’t at all clear. But using the symmetric formulas, it’s easy to rewrite
this sum as a sum

� /äë 2 · 4 F , using identities like � � { 
 � � {� § 
 G � �{  §  ¨ 
 . So we
avoided a relation, and the calculation basically hands us the operator È � .

Wang [Wa, Thm. 1.6.1] used formal power series to “admissify” the
symmetric formulas. We’ll use a simple recursion formula due to Tan-
gora [Ta2, Ta1]. Define Ø §  � � � É�� , for

\ ~U^ 2j�¯� � , recursively by

(15) Ø i  � GO^ 2 Ø $  � G?�
�  i�2 and for

\ ~ � , Ø §  � GOØ § _ $  � � Ø § _u�! � _ $�E
Then for

� ~ aÖ

, and

\ ~U^ , let’s define

(16)
�¦�'2�\u� �1G ����9M� � ��"%$�"�§-� � � Ø §  � ���,"�§ _ � 9K� � ��"%$�" � � Ò Õ � E

By easy induction on
\
, we see that

� � Ø §  � �}�,"�§ _ � 9±� � �,"%$�" � is a finite
sum of admissibles: Ø §  � GS^ for either

��� ^ or
�����Q
ÎkU\

. This justifies
calling Formula (16) the admissible Adem formulas.

Now we obtain relations between the symmetric and admissible Adem
relations, by the usual procedure of applying D to formula (16):

Lemma 7.3. Assume
� ~ aÎ


. Then
�s�'2�\u� GÙ/ �'2�\�4 for

\ GO^ 2.
]2j� , and

(17)
�s�'2�\;�Q
#� GO¬ �s��2�\u�'�O�s�n�U
�2�\�a����7� Ò Õ � 2 for

\ ~ �3E
Proof. The case

\ G ^ 2.
]2j� is obvious, and we’ll deduce formula (17) by
induction on

\ ~ � . First, by replacing
�

by
�°a��

, we have�s�n�Q
]2�\Öa���� G ���,"%$?� � �,"%$�"�§c� ��� Ø § _u�! � _u� �}�,"%$�"�§ _ � � � �,"%$�" � E
Then ¬ �s�'2�\u�'�S�s�n�Q
�2�\Öa>��� equals

���5� � �,"%$�"�§!"%$ plus the sum� � � Ø §  � � Ø §  � _ $�� Ø § _u�! � _u� �Y���,"%$�"�§ _ � � � �,"%$�" �
G � � � Ø §  � � Ø § _ $  � _ $Á�Y���,"%$�"�§ _ � � � �,"%$�" � 2 by (15) for

�°aM

G ��� Ø §?"%$  � � �," à §!"%$ á`_ � � � �,"%$�" � 2 by (15) for

�
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So by this double application of the Tangora recursion formula (15), we
have ¬ �s�'2�\u�'�S�s�n�Q
�2�\Öa>��� G �s�'2�\Â�Q
��

.
¡

Now we have

Lemma 7.4. For all
�'2�\ ~Q^ , �s�'2�\3� is the admissible Adem relation (2).

Proof. We must only show that Ø §  � G � § _ � _ $� 

, for

� ~Q^ and
�����Q
Î�U\

.
Again this follows from induction:Ø §!"%$  � GSØ §  � � Ø § _ $  � _ $ G � \na>�DaK
� � � � \Öa��°aM
�DaK
 � G � \na>�� �
by Pascal’s triangle.

¡
Now we’ll show that the admissible and symmetric Adem relations imply

each other. Let ú L æ Õ � be the admissible analogue of
ç

, so ú has basisz �s�'2�\3� � ��2�\ ~U^3� . Then we have an immediate corollary of Lemma 7.3:

Lemma 7.5. ú G ç
, so

�
can be defined either by the admissible Adem

relations (2) or the symmetric Adem relations (4).

Proof. Since ¬ � ç ��L ç
, Lemma 7.3 implies that

�¦�'2�\u�;� ç
by induction

on
\
. So ú L ç

. But Lemma 7.3 also implies that ¬ �s�'2�\3�¯� ú . Thus¬ � ú �7L ú . Since / �'2 ^ 4 G �s��2 ^ � , and ¬�/ ��2�	%4 GÙ/ �'2!	n�>
�4 , we have
ç L ú .

Hence úSG ç .
¡

Lemma 7.6. The differential
� � �B� �

can be defined either by the admis-
sible Adem relations (3) or the symmetric Adem relations (5).

Proof. For
� ~ aÖ


and
\ ~�^ , we can measure the difference between�s�'2�\3�

and / �'2�\�4 as follows. Let ÷ �  § GÙ/ �'2�\�4,���s�'2�\u��� Ò Õ � . We can restate
Lemma 7.3 as ÷ �  § GQ^ for

\ GQ^ 2.
�2j� , and

(18) ÷ �  §?"%$ GO¬P÷ �  §-�S�s�n�Q
]2�\Öa����7� Ò Õ � 2 for
\ ~ ��E

Let @/ ��2�\�4 and @�¦�'2�\u� be / �'2�\}4 and
�¦�'2�\u�

plus
�u��9S� � �,"%$�"�§R�Q�}�,"�§R9U� � �,"%$ .

Then clearly ÷ �  § G @/ �'2�\�4`� @�s�'2�\u� . Now @/ aÎ
�2�\�4 and @�oaÖ
]2�\u�
are the formulas

in æ Õ � for the symmetric and admissible Adem relations. So specializing
Equation (18) to

� G aÎ

shows by induction on

\
that

@/ aÎ
�2�\�43� @�ÁaÎ
�2�\u� GU÷ _ $  §;� ç E¹¡
The Tangora recursion relations (15) are a theoretical improvement over

the usual recursion formula (which arose in the proof of Lemma 7.3)

(19) Ø §!"%$  � GQØ §  � � Ø §  � _ $�� Ø § _u�! � _u� 2
because it was clear that we had a sum of admissibles, and it was easy to
see that Ø §  � G � § _ � _ $� 


.
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In doing hand calculations, the Tangora recursion relations also give a big
improvement over the usual recursion scheme, because Tangora’s involves
2 terms instead of 3, and the calculation stays on the same “page.” For
instance, we quickly and independently obtain on the

�%i
and

�î$
pages:�Yij�î$ GO^ �î$?� Ú GS^�Yij� � G �î$?�î$ �î$?��Û G � � � Ú�Yij� Ú G � � �î$ �î$?�>� G � Ú � Ú�Yij��Û G � Ú �î$��:� � � � �î$?� � G ��Û,� Ú �B� Ú �YÛ�Yij�>� G ��Û,�î$ �î$?� � G �>�j� Ú�Yij� � G �>�j�î$��:��Û�� � �:� Ú � Ú �î$?� � G � � � Ú �B�A���YÛ-�:��Û,�>��Yij� � G � � �î$��:��Û�� Ú �î$?�>B G � � � Ú �B�A���A��Yij� � G � � �î$��:� � � � �:��Û���Û �î$?�î$�i G � � � Ú �B� � �YÛ-�:�>�j� ��Yij�>B G � � �î$ �î$?�î$Ë$ G �>Bj� Ú

In usual recursive scheme, based on (19), one applies ¬ to each equation to
get the next one. In the Steenrod algebra [M-T], this works OK. To compute+ ë Ú + ë Û G + ë � on the

+ ë Û page, we need the
+ ë { page for |�G 
�2��32 f , and

this presents no hardship. But in
�

, the
�*i

page requires part of the
�'$

page,
which requires part of the

� � page, etc. For instance, to compute
�%i,�>B

, we
apply ¬ to the equations for

�*i,� � , �î$?� � and
� � � � to obtain�Xij�>B G ��� � �î$��B� � � Ú �:�>�,�YÛq�B�YÛ��>�j�'�O��� � � Ú �:�>�j��Û,�'�:��Û��A� G � � �î$jE
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