TRANSFERS OF CHERN CLASSES IN BP-COHOMOLOGY AND CHOW RINGS

BJÖRN SCHUSTER AND NOBUAKI YAGITA

Abstract. The BP^*-module structures of $BP^*(BG)$ for extraspecial 2-groups are studied using transfer and Chern classes. These give rise to p-torsion elements in the kernel of the cycle map from the Chow ring to ordinary cohomology first obtained by Totaro.

1. Introduction

Let G be a compact Lie group, e.g. a finite group, and $h^*(BG)$ a good generalized cohomology theory on the classifying space BG of G. Here "good" shall mean that $h^*(BU(m))$ is isomorphic to $h^* \otimes H^*(BU(m))$ for the unitary groups $U(m)$. Then we can define Chern classes in $h^*(BG)$ for complex representations of G, and also transfer maps. We are interested in the Mackey closure $\overline{Ch}_h(G)$ of the ring of Chern classes in $h^*(BG)$, namely the subring of $h^*(BG)$ generated by transfers of Chern classes.

For ordinary mod p cohomology, Green-Leary [G-L] showed that the inclusion map $i : \overline{Ch}_{HZ/p} \hookrightarrow H^*(BG;\mathbb{Z}/p)$ is an F-isomorphism, i.e., the induced map of varieties is a homeomorphism. Green-Minh [G-M] however noticed that i/\sqrt{p} need not be an isomorphism in general. Next consider $h = BP$ or $h = K(n)$, the n-the Morava K-theory, at a fixed prime p. Following Hopkins-Kuhn-Ravenel [H-K-R], we shall call a group G "good" for h-theory if $h^*(BG)$ is generated (as an h^*-module) by transferred Euler classes of representations of subgroups of G. It is clear that if the Sylow p-subgroup of G is good, then so is G and one has an isomorphism $h^*(BG) \cong \overline{Ch}_h(G)$. Furthermore, it follows from [R-W-Y] that G is good for BP if it is good for $K(n)$ for all n. Examples for groups that are $K(n)$-good for all n are the finite symmetric groups. Another typical case are p-groups of p-rank at most 2 and $p \geq 5$: in [Y] it is shown that the Thom map $\rho : BP^*(-) \to H^*(-)(p)$ induces an isomorphism $BP^*(BG) \otimes_{BP^*} Z(p) \cong H^{even}(BG)$. Note however that I. Kriz claimed that $K(n)^{odd}(BG) \neq 0$ for some p-groups G.

1991 Mathematics Subject Classification. Primary 55P35, 57T25; Secondary 55R35, 57T05.

Key words and phrases. BP-theory, transfer, Chern classes, Chow ring.
On the other hand, B. Totaro [T1] found a way to compare BP-theory to the Chow ring. For a complex algebraic variety X, the groups $CH^i(X)$ of codimension i algebraic cycles modulo rational equivalence assemble to the Chow ring $CH^*(X) = \sum_i CH^i(X)$. Totaro constructed a map $\tilde{\rho} : CH^i(X) \to BP^*(X) \otimes_{BP^*} \mathbb{Z}(p)$ such that the composition

$$\tilde{\rho} : CH^i(X)_{(p)} \xrightarrow{\tilde{\rho}} BP^*(X) \otimes_{BP^*} \mathbb{Z}(p) \xrightarrow{\rho} H^*(X)_{(p)}$$

coincides with the cycle map. One of the main results of [T1] is that there exists a group G for which the kernel of $\tilde{\rho}$ contains p-torsion elements. To prove this, Totaro defined the Chow ring of a classifying space BG as $\lim_{m \to \infty} CH^*((\mathbb{C}^m - S)/G)$ where G acts on $\mathbb{C}^m - S$ freely and $\text{codim}(S) > 0$. He then constructed a non-zero element x in $\text{Ker}(\rho)$ such that

$$x \in \overline{CH}_{BP}(BG) \cap (BP^*(BG) \otimes_{BP^*} \mathbb{Z}(p)).$$

Since transfers and Chern classes also exist in the Chow ring $CH^*(BG)$, there is an element $\bar{x} \in \overline{CH}(G)$ that also lies in $\text{Ker}(\tilde{\rho})$. The group Totaro uses is $G = \mathbb{Z}/2 \times D^{1+4}_+$, where $D^{1+4}_+ = D(2)$ is the extraspecial 2-group of order 32, which is isomorphic to the central product of two copies of the dihedral group D_8 of order 8. He first proves that there exists an element $x \in BP^*(BD(2))$ satisfying (1.1) but which restricts to zero under the map $\rho_{\mathbb{Z}/2} : BP^*(-) \to H^*(-; \mathbb{Z}/2)$, where he uses the computation of $BP^*(BSO(4))$ from [K-Y].

Let $D(n) = 2^{1+2n}_+$ denote the extraspecial 2-group of order 2^{2n+1}; it is isomorphic to the central product of n copies of D_8. In this paper, we construct non-zero elements $x \in BP^*(BD(n))$ satisfying (1.1) but with $\rho_{\mathbb{Z}/2}(x) = 0$ directly for each n.

Let \hat{W} be a maximal elementary abelian 2-subgroup and N the center of $D(n)$. For a one-dimensional real representation e of \hat{W} restricting non-trivially to the center, set $\Delta = \text{Ind}_{\hat{W}}^{D(n)}(e)$. This is the unique irreducible representation which acts non-trivially on N. Then the i-th Stiefel-Whitney class $w_i(\Delta)$ for $i < 2^n$ can be written as a polynomial in variables $w_i(e_j), 1 \leq j \leq 2n$, for 1-dimensional representations e_j of $D(n)/N$ ([Q], Remark 5.13), i.e. $w_i(\Delta) = w_i(e_1), ..., w_i(e_{2n})$. Let e'_C denote the complex representation induced from the real representation e'. Then we can prove that

$$x = c_{2n-1}(\Delta_C) - w_{2n-1}(c_1(e_{1C}), ..., c_1(e_{2nC}))$$

satisfies (1.1) together with $\rho_{\mathbb{Z}/2}(x) = 0$, and furthermore conclude $\text{Ker}(\rho) \neq 0$ for $G = \mathbb{Z}/2 \times D(n)$.

Secondly, we construct a non-nilpotent element

\[x \in \text{Ker}(\rho) \cap (BP^*(BG) \otimes_{BP} \mathbb{Z}(\rho)) \]

which is not in \(\text{Ch}_{BP}(BG) \). However we do not know whether \(x \) comes from the Chow ring or not, and we only obtain the result for \(n = 3, 4 \). Set

\[x = [v_1 \otimes w_2^*(\Delta)] \]

(1.4)

to be the class represented by \(v_1 \otimes w_{2n}(\Delta) \) in the \(E_\infty \)-page of the Atiyah-Hirzebruch spectral sequence. We can prove that \(d_{2n+1}(w_{2n}(\Delta)) = v_{n-1} \otimes Q_{n-1}(w_{2n}(\Delta)) \neq 0 \) and \(v_1 \otimes Q_{n-1}(w_{2n}(\Delta)) \in \text{Im}(d_3) \). Furthermore, restricting to the center of \(D(n) \) we see that \(x \not\in \text{Ch}_{BP}(BG) \). However, it seems difficult to see that this cycle is permanent. For the case \(n = 3, 4 \), we use the \(BP \)-theory of \(B\text{Spin}(7) \) and \(B\text{Spin}(9) \) computed in [K-Y].

These arguments do not seem to work for other extraspecial 2-groups nor 2-groups that have a cyclic maximal normal subgroup [S].

In Section 2, we recall the mod 2 cohomology of extraspecial 2-groups following [Q]. In particular, \(w_{2n-2}(\Delta) \) is represented by the Dickson invariant \(D_i \), and we study the action of the Milnor primitives \(Q_j \) on \(D_i \).

To see \(\rho(x) \neq 0 \) in \(H^*(BD(n); \mathbb{Z}) \), we recall the integral cohomology in Section 3. In Section 4, we show that \(x \) satisfies (1.1). In Section 5, we study how elements in \(\text{Ker}(\rho) \) are represented in the Atiyah-Hirzebruch spectral sequence, explaining the easiest case \(h^* = \mathbb{Z}/2[\nu_{n-2}, \nu_{n-1}] \). The element \(x \) in (1.4) is proved not to be in \(\text{Ch}_{BP}(BD(n)) \) in Section 6. In the last section the element \(x \) in (1.4) is proved to be a permanent cycle in the Atiyah-Hirzebruch spectral sequence for \(n = 3, 4 \) by comparing the spectral sequence to the corresponding spectral sequence for \(H^*(B\text{Spin}(2n + 1)) \).

2. Extraspecial 2-groups

The extraspecial 2-group \(D(n) = 2^{1+2n}_+ \) is the central product of \(n \) copies of the dihedral group \(D_8 \) of order 8. So there is a central extension

\[0 \to N \to D(n) \xrightarrow{\pi} V \to 0 \]

(2.1)
with \(N \cong \mathbb{Z}/2 \) and \(V \) elementary abelian of rank \(2n \). Take a set of generators \(c, \tilde{a}_1, \ldots, \tilde{a}_{2n} \) of \(D(n) \) such that \(c \) is a generator of \(N \), the elements \(a_i = \pi(\tilde{a}_i) \) form a \(\mathbb{Z}/2 \)-basis of \(V \), and

\[
[\tilde{a}_j, \tilde{a}_{2i}] = \begin{cases}
 c & \text{if } j = 2i - 1 \\
 0 & \text{else}
\end{cases}
\]

Using the Hochschild-Serre spectral sequence associated to extension (2.1), Quillen [Q] determined the mod 2 cohomology of \(D(n) \). Let \(e_i \) denote the real 1-dimensional representation of \(D(n) \) given as the projection onto \(\langle a_i \rangle \) followed by the nontrivial character \(\langle a_i \rangle \rightarrow \{ \pm 1 \} \subset \mathbb{R} \), and \(e : \mathbb{V}^{\text{odd}} \rightarrow N \rightarrow \{ \pm 1 \} \subset \mathbb{R} \) where \(\mathbb{V}^{\text{odd}} = \langle c, \tilde{a}_{2i-1} \mid 1 \leq i \leq n \rangle \) is a maximal elementary abelian 2-subgroup of \(D(n) \). Define classes \(x_i \in H^1(D(n); \mathbb{Z}/2) \), \(w_{2n} \in H^{2n}(D(n); \mathbb{Z}/2) \) as the Euler classes of the \(e_i \) and of \(\Delta = \text{Ind}_{\mathbb{V}^{\text{odd}}}^{D(n)}(e) \), respectively. The extension (2.1) is represented by the class \(f = x_1x_2 + \cdots + x_{2n-1}x_{2n} \), and one has

\[
(2.2) \quad H^*(BD(n); \mathbb{Z}/2) \cong \mathbb{Z}/2[w_{2n}] \otimes \mathbb{Z}[x_1, \ldots, x_{2n}]/(f, Q_0f, \ldots, Q_{n-2}f)
\]

where the \(Q_i \) are Milnor’s operations recursively defined by \(Q_0 = Sq^1 \) and \(Q_i = [Sq^{2i}, Q_{i-1}] \).

The extension class \(f \) defines a quadratic form \(q : V \rightarrow \mathbb{Z}/2 \) on \(V \). A subspace \(W \subset V \) is said to be \(q \)-isotropic if \(q(x) = 0 \) for all \(x \in W \). The maximal (elementary) abelian subgroups of \(D(n) \) are in one-to-one correspondence with the maximal isotropic subspaces of \(V \). Indeed, if \(W \) is maximal isotropic, then \(\mathbb{V} := \pi^{-1}(W) \cong N \oplus W \) is maximal (elementary) abelian. Quillen also proved that the mod 2 cohomology of \(D(n) \) is detected on maximal elementary abelian subgroups, i.e. the restrictions define an injective map

\[
(2.3) \quad H^*(BD(n); \mathbb{Z}/2) \hookrightarrow \prod H^*(\mathbb{V}; \mathbb{Z}/2)
\]

where the product ranges over conjugacy classes of maximal elementary abelian subgroups. Since the restriction of \(\Delta \) to any such \(\mathbb{V} \) is the real regular representation (see [Q], Section 5), we have

\[
(2.4) \quad \text{Res}_{\mathbb{V}}(w_{2n}) = \prod_{x \in H^2(W; \mathbb{Z}/2)} (z + x)
\]

where \(z \) denotes the generator of \(H^*(N; \mathbb{Z}/2) \) dual to \(c \). For simplicity, write \(w' = \text{Res}_{\mathbb{V}} w_{2n} \), and choose generators of \(H^*(W; \mathbb{Z}/2) \cong \mathbb{Z}/2[x'_1, \ldots, x'_n] \). It is well-known that the right hand side of (2.4) can be written in terms of Dickson invariants,

\[
(2.5) \quad w' = z^{2n} + D_1z^{2n-1} + \cdots + D_nz
\]
where \(D_i\) has degree \(2^n - 2^{n-i}\) and \(H^*(W; \mathbb{Z}/2)^{GL_2(\mathbb{Z}/2)} \cong \mathbb{Z}/2[D_1, \ldots, D_n]\). Using that the product of all the \(x'_i\)'s is clearly invariant and that the Milnor primitives are derivations, it is easy to see that the Dickson invariants may be written in terms of the \(Q_i\) as follows:

\[
\begin{align*}
D_n &= Q_0Q_1 \cdots Q_{n-2}(x'_1 \cdots x'_n) \\
D_i &= (Q_0 \cdots Q_{n-i-1}Q_{n-1}(x'_1 \cdots x'_n))/D_n
\end{align*}
\]

Lemma 2.1. The Milnor operations act by

1. \(Q_{n-1}D_i = D_nD_i\);
2. \(Q_{n-j-1}D_j = D_n\);
3. \(Q_iD_j = 0\) for \(i < n - 1\) and \(i \neq n - j - 1\).

Proof. First note that from (2.6) and \(Q_k^2 = 0\) we immediately get \(Q_k(D_n) = 0\) for \(k \neq n - 1\) and \(Q_{n-1}D_n = Q_0 \cdots Q_{n-1}(x'_1 \cdots x'_n) = D_n^2\). Thus, for each \(1 \leq i \leq n - 1\),

\[
\begin{align*}
0 &= Q_{n-1}(Q_0 \cdots Q_{n-i-1} \cdots Q_{n-1}) (x'_1 \cdots x'_n) = Q_{n-1}(D_iD_n) \\
&= (Q_{n-1}D_i)D_n + D_iQ_{n-1}D_n = (Q_{n-1}D_i)D_n + D_iD_n^2
\end{align*}
\]

whence (1). Similarly, (2) is implied by

\[
\begin{align*}
D_n^2 &= Q_0 \cdots Q_0(x'_1 \cdots x'_n) = Q_{n-i-1}(D_iD_n) \\
&= (Q_{n-i-1}D_i)D_n + D_iQ_{n-i-1}D_n = (Q_{n-i-1}D_i)D_n.
\end{align*}
\]

Finally, for \(k \neq n - i - 1\) we get \(0 = Q_k(D_iD_n) = (Q_kD_i)D_n + D_iQ_kD_n = (Q_kD_i)D_n\).

Corollary 2.2. \(Q_{n-1}w' = D_nw'\) and \(Q_kw' = 0\) for \(k < n - 1\).

Proof. For \(j \neq n - 1\), we have \(Q_jw' = \sum_{i=1}^{n-1}(Q_jD_i)z^{2^{n-i}} + Q_j(D_nz) = D_nz^{2^{j+1}} + D_nz^{2^{j+1}} = 0\). For \(j = n - 1\), we get \(Q_{n-1}w' = 0 + D_nD_1z^{2^{n-1}} + \cdots + D_nD_{n-1}z^2 + Q_{n-1}(D_nz)\). The last term equals \(D_n^2z + D_nz^{2^n}\); the claim follows.

Corollary 2.3. \(Q_kw_{2^n} = 0\) for \(0 \leq k \leq n - 2\), but \(Q_{n-1}w_{2^n} \neq 0\).

3. The integral cohomology

The integral cohomology of \(D(n)\) is studied by Harada-Kono ([H-K], also see [B-C]) by means of the Bockstein spectral sequence

\[
E_1 = H^*(BG; \mathbb{Z}/2) \implies \mathbb{Z}/2 \otimes H^*(BG)/(2\text{-torsion}).
\]
Harada-Kono computed the E_2-page for $D(n)$ as follows:

$$H(H^*(BD(n);\mathbb{Z}/2);Q_n) \cong \Lambda(a,b_1,\ldots,b_{n-1}) \otimes \mathbb{Z}/2[w_2^n]$$

where $|a|=3$ and $|b_i|=2^i$. Since $E_\infty \cong \mathbb{Z}/2$, the first non-trivial differential must be $da = b_1$, and there have to be subsequent differentials $d(ab_i) = b_{i+1}$. Thus there appear exactly n non-zero differentials in this spectral sequence. On the other hand, using corestriction arguments it is easy to see that the exponent of $H^*(BD(n))$ is at most $n+1$. Based on these facts, Harada-Kono proved the following.

Theorem 3.1. [H-K] Let $C(n)^* = H^*(BD(n))/H^*(BV)$. Then $C(n)^* \subset H^*(BD(n))$, and there is an additive isomorphism

$$C(n)^k = \begin{cases} \mathbb{Z}/2^{\nu_2(k)} & \text{if } \nu_2(k) \leq n-1, \\ \mathbb{Z}/2^{n+1} & \text{if } \nu_2(k) = n \end{cases}$$

where $\nu_2(k)$ denotes the 2-adic valuation of k. \hfill \square

Let $c_k(n)$ denote a $\mathbb{Z}/(2)$-module generator of $C(n)^{2^k}$. Then $c_n(n)$ reduces to w_2^n modulo $H^*(BV;\mathbb{Z}/2)$. Consider the restriction map $i: C(n)^* \to C(n-1)^*$. Now $c_{n-1}(n-1) = w_2^{n-1}$ mod $H^*(BV;\mathbb{Z}/2)$ implies $i^*c_n(n) = c_{n-1}(n-1)^2$. Since the order of $c_{n-1}(n)$ is 2^{n-1} and the order of $c_{n-1}(n-1)$ is 2^n, we know that $i^*c_n(n) = 2^s c_{n-1}(n-1)$ for some $s>0$. A corestriction argument now implies $s=1$, since the index of $D(n-1)$ in $D(n)$ is 2.

The elements a and b_i are natural in the sense that $i^*(a) = a$ and $i^*(b_j) = b_j$ for $1 \leq j \leq n-2$, abusing notation. Thus $i^*c_j(n) = c_j(n-1)$ for $j < n-1$, and we obtain

Corollary 3.2. If $n \geq 2$, there is an additive isomorphism

$$C(n)^* \cong \mathbb{Z}\{1,2\bar{w}_2^{2^i}\cdots\bar{w}_2^{2n-1} | \epsilon_i = 0 \text{ or } 1\}/(2^{i+1}\bar{w}_2, = 0 | 2 \leq i \leq n)$$

where the \bar{w}_2, are the reductions of the elements w_2 in $H^{2^i}(BD(i))$. \hfill \square

Remark. When $n = 1$, the element $w_2 \in H^*(BD_8;\mathbb{Z}/2)$ does not lift to the integral cohomology and $C(1)^* \cong \mathbb{Z}[^2\bar{w}_2]/(4\bar{w}_2^2)$.
4. Brown-Peterson Cohomology of $BD(n)$

Let $BP^*(-;\mathbb{Z}/2)$ denote BP-theory mod 2 with coefficients $BP^*(2) = \mathbb{Z}/2[v_1,v_2,\ldots]$. We consider the Atiyah-Hirzebruch spectral sequence

$$E_2^{*,*} = H^*(BD(n);\mathbb{Z}/2) \otimes BP^* \Rightarrow BP^*(BD(n);\mathbb{Z}/2).$$

Lemma 4.1. The elements x_i^2 and w_2^n are permanent cycles in the spectral sequence (4.1).

Proof. These elements are the top Chern classes of the representations $e_1 c$ and Δc, respectively. \hfill \Box

It is well-known that some of the differentials of (4.1) are given by

$$d_{2i+1-1}(x) = v_i \otimes Q_i x \mod (v_1,\ldots,v_{i-1}).$$

Since $Q_n w_2^n \neq 0$ by Corollary 2.3, we know that w_2^n cannot be a permanent cycle, which implies $w_2^n \not\in \text{Im}(\rho_{\mathbb{Z}/2}: BP^*(BD(n)) \to H^*(BD(n);\mathbb{Z}/2))$. Thus the integral lift \bar{w}_2^n of w_2^n does not lie in the image of $\rho: BP^*(BD(n)) \to H^*(BD(n))$, either.

Let as above \bar{W} denote a maximal elementary abelian subgroup of $D(n)$, and $w(\Delta)$ the total Stiefel-Whitney class of Δ. Then

$$\text{Res}_{\bar{W}}^{D(n)}(w(\Delta)) = \prod (1 + x + z) = (1 + z)^{2^n} + D_1 (1 + z)^{2^{n-1}} + \cdots + D_n (1 + z)$$

$$= 1 + D_1 + \cdots + D_n + \text{Res}_{\bar{W}}^{D(n)}(w_2^n);$$

in particular,

$$\text{Res}_{\bar{W}}^{D(n)}(w_{2^n-1}(\Delta)) = D_1.$$

Hence, by (2.2), we can choose polynomials $\tilde{D}_i \in \mathbb{Z}/2[x_1,\ldots,x_{2n}] \cong H^*(BV;\mathbb{Z}/2)$ with $w_{2^n-1} = \tilde{D}_1$.

Theorem 4.2. There is a BP^*-module generator

$$x = c_{2^{n-1}}(\Delta c) - \tilde{D}_1(c_1(e_1 c),\ldots,c_1(e_{2n} c)) \in BP^*(BD(n))$$

such that

1. $\rho(x) = 2\bar{w}_2^n \mod H^*(BV)$,
2. $\rho_{\mathbb{Z}/2}(x) = 0$ in $H^*(BD(n);\mathbb{Z}/2)$.

Proof. Since x is defined via Chern classes, it is an element of $BP^*(BD(n))$. Assertion (2) is immediate from (4.3). Since $\bar{w}_2 \not\in \text{Im}(\rho)$, it suffices to prove (1) to show that x is a BP^*-module generator. Let $F = \langle a_1a_2 \rangle \subset D(n)$; this is cyclic of order 4. By the double coset formula,

$$\text{Res}_F^{D(n)} \text{Ind}_{V_{odd}}^D(e_C) = \bigoplus_{FgV_{odd}} \text{Ind}_{F \cap g V_{odd}}^F \text{Res}_{F \cap g V_{odd}}^{gV_{odd}} (g^*e_C)$$

since the elements $g = a_2^i a_2^{2n}$, $i = 0$ or 1, form a complete set of double coset representatives. Notice that $\text{Ind}_N^H(e_C)$ decomposes as $e_F \oplus -e_F$ where e_F is a faithful 1-dimensional complex representation of $\mathbb{Z}/4$. Thus the total Chern class of Δ_C restricts to F as

$$\text{Res}_F(c(\Delta_C)) = ((1 + u)(1 - u))^{2n-1} = (1 - u^2)^{2n-1} \quad \text{with } H^*(BF) \cong \mathbb{Z}[u]/(4u).$$

Consequently, we have $\text{Res}_F(c_{2n-1}(\Delta_C)) = 2u^{2n-1}$ in $H^*(F)$. Since $\text{Res}_F(c_1(e_C)) = 2\lambda_i u$ for some $\lambda_i \in \mathbb{Z}/4$, we immediately obtain $\text{Res}_F(D) = 0$ and therefore (1). \hfill \Box

Now recall the following lemma of Totaro.

Lemma 4.3. ([T1]) Let p be a prime and X any space. If $\rho_{\mathbb{Z}/p} : BP^*(X) \otimes_{BP^*} \mathbb{Z}_p \rightarrow H^*(X; \mathbb{Z}/p)$ is not injective, then $\rho : BP^{*+2}(X \times \mathbb{Z}/p) \otimes_{BP^*} \mathbb{Z}_p \rightarrow H^{*+2}(X \times \mathbb{Z}/p)$ is also not injective. \hfill \Box

Let $\rho' : CH^*(-) \rightarrow H^*(-)$ denote the cycle map respectively $\rho'_{\mathbb{Z}/2}$ the cycle map followed by reduction modulo 2. Since Chow rings have Chern classes, we easily deduce

Corollary 4.4. There is a non-zero element x' in $CH^{2n}(BD(n))$ satisfying

1. $\rho'(x') = 2\bar{w}_{2n} \mod H^*(BV)$;
2. $\rho'_{\mathbb{Z}/2}(x') = 0$.

Hence $\rho' : CH^{2n+2}(B(D(n) \times \mathbb{Z}/2)) \rightarrow H^{2n+2}(B(D(n) \times \mathbb{Z}/2))$ is not injective. \hfill \Box

Remark. First note that the above argument does not hold for $n = 1$. Indeed, in that case $H^*(BD_8) \subset \text{Im}(\rho)$ modulo $H^*(BV)$. Similar facts hold for 2-groups G which have a cyclic maximal normal subgroup $[S]$, i.e. dihedral, semidihedral, quasidihedral, and generalized quaternion groups of order a power of 2. Moreover $BP^*(BG)$ is generated by Chern classes for these groups. The extraspecial 2-groups of order 2^{2n+1} are of two types. Quillen calls them the real and the quaternionic type, where the real type corresonds to the groups $D(n)$.
considered above, and the quaternionic group of order 2^{n+1} is the central product of $D(n-1)$ with the quaternion group Q_8 of order 8. Consider now this second case, and denote this group by $D'(n)$; it also has center $\mathbb{Z}/2$ with quotient $V \cong (\mathbb{Z}/2)^{2n}$. In Quillen’s notation $[Q]$, this corresponds to $h = n + 1$ and $r = 2$. The quadratic form (extension class) is

$$f = x_1^2 + x_1x_2 + x_2^2 + \sum_{i=2}^{n} x_{2i-1}x_{2i},$$

and the cohomology is given by

$$H^*(BD'(n); \mathbb{Z}/2) \cong \mathbb{Z}/2[w_{2n+1}] \otimes \mathbb{Z}/2[x_1, \ldots, x_{2n}]/(f, Q_0f, \ldots, Q_{n-1}f).$$

Here the x_i are as before the generators of $H^*(BD(n); \mathbb{Z})$ inflated to $D'(n)$, and w_{2n+1} is the Euler class of the 2^{n+1}-dimensional irreducible representation Δ. The cohomology of $D'(n)$ is also detected on subgroups $\tilde{W} \cong Q_8 \times W$ in one-to-one correspondence with maximal isotropic subspaces, i.e. there is an injection

$$H^*(BD'(n); \mathbb{Z}/2) \twoheadrightarrow \prod_W H^*(B(Q_8 \times W); \mathbb{Z}/2)$$

where W ranges over the maximal isotropic subspaces of V (which have dimension $n-1$). The Stiefel-Whitney classes $w_j(\Delta)$ are zero except for the following values of j ([Q], (5.6)):

$$\text{Res}_{Q_8 \times W}(w_j(\Delta)) = \begin{cases} (D'_i)^4 & \text{for } j = 2^h - 2^{h-i}, 1 \leq i \leq n-1 \\ \sum_{i=0}^{n-2} e^{2i}(D'_{n-i-1})^4 & \text{for } j = 2^{n+1} \end{cases}$$

where $e \in H^4(Q_8; \mathbb{Z}/2)$ is the Euler class of the obvious 4-dimensional irreducible representation of Q_8 and D'_i is the degree $(2^{n-1} - 2^{n-1-i})$ Dickson invariant for rank $n-1$. Thus almost all arguments for $D(n)$ work in this case, too, except for $Q_m w_j(\Delta) = 0$. For example, we can define $x = c_{2^n}(e \xi) - (\tilde{D}_1)^4$ in $BP^*(BD'(n))$; this class satisfies $\rho(x) = 2\tilde{w}_{2n+1}$ and $\rho_{\mathbb{Z}/2}(x) = 0$. However, it seems that we can not prove that x is a BP^*-module generator of $BP^*(BD'(n))$ because $\text{Res}_N(c_{2^n}(\text{Ind}_{\mathbb{Z}/2})^4(e_F))) = u^{2^n}$ and $w_{2n+1}(\Delta) \in \text{Im}(\rho)$ mod $(H^*(BV))$.

5. Permanent cycles

This section is concerned with the following statement:

Assumption 5.1. In the Atiyah-Hirzebruch spectral sequence converging to $BP^*(BD(n))$, every element in $(2, v_1, \ldots, v_{n-1}) \otimes \tilde{w}_{2^n}$ is a permanent cycle.
Unfortunately, we can not prove this in full generality, only a rather weak version (covering the cases \(n = 3, 4 \)), which nevertheless seems to justify why we expect such classes to be permanent.

Let \(BP(\mathbb{Z}, n-1) \) denote the cohomology theory with coefficients \(BP(\mathbb{Z}, n-1) = \mathbb{Z}/(p[v_{n-2}, v_{n-1}] \). Then there are natural transformations

\[
BP^*(-) \longrightarrow BP(\mathbb{Z}, n-1)^*(-) \longrightarrow H^*(-; \mathbb{Z}/2) .
\]

Proposition 5.2. In the Atiyah-Hirzebruch spectral sequence converging to \(BP(\mathbb{Z}, n-1)^*(BD(n)) \), every element in \((v_{n-2}) \otimes w_{2n} \) is a permanent cycle.

Proof. First note that \(w_{2n} \) is not in the image of \(Q_{n-2} \), which is easily seen by restricting to \(N \): \(Res_N(w_{2n}) = z^{2^n} = Q_{n-2} 2^{2^{n-1}+1} \), whereas the image of \(Res_{D(n)}^N \) is generated by \(z^{2^n} \).

This means that no element in \((v_{n-2}) \otimes w_{2n} \) lies in the image of the first potentially non-zero differential \(d_2n-1 \). The next non-zero differential is \(d_{2n-3} = v_{n-2}^2 \otimes - \). Dimensional reasons easily imply that \((v_{n-2}) \otimes w_{2n} \notin \text{Im}(d_r) \) for any \(r \).

Suppose first that \(d_r w_{2n} = 0 \) for all \(r < 2^n - 1 \). Then \(d_{2n-1} w_{2n} = v_{n-1} \otimes Q_{n-1} w_{2n} \neq 0 \). Thus by naturality of the spectral sequence and Corollary 2.2, we see that

\[
\text{Res}_{W}(d_{2n-1} w_{2n}) = v_{n-1} \otimes Q_{n-1} w' = v_{n-1} \otimes D_n w' .
\]

Since there are classes \(\tilde{D}_i \in H^*(BD(n); \mathbb{Z}/2) \) which restrict to \(D_i \) on each \(\tilde{W} \), Quillen’s detection result (2.3) shows

\[
d_{2n-1} w_{2n} = v_{n-1} \otimes \tilde{D}_n w_{2n} . \tag{5.1}
\]

Furthermore, \(\tilde{D}_n w_{2n} \) is \(v_{n-2} \)-torsion, since \(d_{2n-1} \tilde{D}_i = v_{n-2} \otimes \tilde{D}_n \), whence \(v_{n-2} \otimes w_{2n} \) persists to \(E_{2n+1}^* \). So assume now that \(d_r w_{2n} \neq 0 \) for some \(r < 2^n - 1 \). For dimensional reasons again, the only possibility for such a differential is

\[
d_{2n-3} w_{2n} = v_{n-2}^2 \otimes (aw_{2n} + b) \quad \text{with} \quad a, b \in H^*(BV; \mathbb{Z}/2) . \tag{5.2}
\]

Note that the subgroup of the automorphisms of \(G \) stabilizing the center \(N \) is the orthogonal group \(O(V) \) of \(V \) associated to the quadratic form \(q \) ([B-C], p. 216). Since \(\Delta \) is the unique irreducible representation which acts non-trivially on \(N \), the element \(w_{2n} \) is invariant under the orthogonal group ([Q], Remark 4.7). Let as before \(V^{odd} = \mathbb{Z}/2 \{ a_{2i-1} \mid 1 \leq i \leq n \} \), and \(V^{ev} = \mathbb{Z}/2 \{ a_{2i} \mid 1 \leq i \leq n \} \). Both are maximal isotropic subspaces, and \(V = V^{odd} \oplus V^{ev} \).
Then

\[(5.3) \quad O(V) = \{g \oplus t^g^{-1} \mid g \in \text{GL}_n(\mathbb{Z}/2)\}\]

(where \(t\) is transposition).

Any maximal \(q\)-isotropic subspace \(W\) has dimension \(n\). Interchanging \(a_{2i-1}\) with \(a_{2i}\) if necessary, we can turn the projection

\[pr: W \subset V = V^{\text{odd}} \oplus V^{\text{ev}} \longrightarrow V^{\text{odd}}\]

into an isomorphism (see \([Q]\), p. 201). Consider the commutative diagram

\[(5.4) \quad \begin{array}{ccc}
V^{\text{odd}} & \longrightarrow & W \\
\downarrow g & & \downarrow g \\
V^{\text{odd}} & \longrightarrow & gW \\
& & \downarrow \\
& & D(n)
\end{array}\]

Let \(a\) be as in (5.2) and suppose \(\text{Res}_W(a) \neq 0\). Since \(pr^*: H^*(BV^{\text{odd}}; \mathbb{Z}/2) \cong H^*(BW; \mathbb{Z}/2)\), we have \((pr^*)^{-1}(a) \neq 0\) in \(H^*(BV^{\text{odd}}; \mathbb{Z}/2)\). The image of \(a\) in \(H^*(BD(n); \mathbb{Z}/2)\) is invariant under the action of \(O(V)\). Hence \((pr^*)^{-1}(a)\) is invariant under the GL\(_n\)-action, by (5.3).

But \(|a| = 2^n - 3\), and there is no invariant of that degree, whence \(a = 0\). Using similar reasoning, we can prove \((pr^*)^{-1}(b) = D_{n-1}D_n\). But in the spectral sequence converging to \(BP(n-2, n-1)^*(BD(n))\), there is the differential \(d_{2^n-1}(\bar{D}_{n-1}) = v_{n-2} \otimes \bar{D}_{n-1}\).

Hence we can remove \(v_{n-1} \otimes b\) from (5.2).

Finally, we shall prove \(d_r(v_{n-1} \otimes w_{2^n}) = 0\) for all \(r \geq 2^n\). Suppose

\[d_r(v_{n-1} \otimes w_{2^n}) = \sum v_{n-2}^kv_{n-1}^la_{kl} \quad \text{for some } a_{kl} \in H^*(BD(n); \mathbb{Z}/2).\]

Then each \(a_{kl}\) is invariant under the action of \(O(V)\), and moreover the degrees of the \(a_{kl}\) are odd. Arguing as above, we see that

\[(5.5) \quad \text{Res}_{\tilde{V}^{\text{odd}}}(a_{kl}) = \sum D_I \quad \text{with } D_I \in (D_n)\]

where \(D_I = D_{i_1} \cdots D_{i_m}\), \(1 \leq i_j \leq n + 1\), identifying \(D_{n+1}\) with \(w_{2^n}\). From \(Q_{n-1}D_i = D_iD_n\) we have \(Q_{n-1}D_I = mD_ID_n\). Hence if \(Q_{n-1}D_I \neq 0\), the number of factors must be odd.

Thus we assume the number of \(D_i\)'s in (5.5) is even. But for each such \(D_I\) there is a corresponding \(\tilde{D}_I \in H^*(BD(n); \mathbb{Z}/2)\), and all those \(\tilde{D}_I\) are \((v_{n-2}, v_{n-1})\)-torsion. Thus \(d_r(v_{n-1} \otimes w_{2^n}) = 0\) for dimensional reasons. \(\square\)
6. Transfers of Chern classes

To study Chern classes, we consider the restriction to the center $N \cong \mathbb{Z}/2$ of $D(n)$. Let I denote the ideal $(2, v_1, v_2, \ldots)$ in BP^*. Then

$$\rho_{\mathbb{Z}/2} : BP^* BN / I \cong \mathbb{Z}/2[z^2] \subset H^*(BN; \mathbb{Z}/2).$$

Since the image of the restriction $H^*(BD(n); \mathbb{Z}/2) \to H^*(BN; \mathbb{Z}/2)$ is generated by $w_{2^n} \notin \text{Im}(\rho_{\mathbb{Z}/2})$, we see that

$$\text{Im}[BP^*(BD(n)) \to BP^*(BN)/I] = \mathbb{Z}/2[u^{2^n}],$$

where u denotes the obvious generator in degree 2. Let ξ be a complex representation of $D(n)$; it restricts to N as the sum of m copies (say) of the nontrivial character c_C plus some trivial representations. Then there is an element $u' \equiv u \mod I$ in $BP^*(BN)$ with

$$\text{Res}_N(c(\xi)) = (1 + u'^m)$$

where $c(\xi)$ denotes as usual the total Chern class of ξ. Then $u^m \in \text{Im}[BP^*(BD(n)) \to BP^*(BN)/I]$, whence m has to be divisible by 2^n.

Proposition 6.1. Suppose Assumption 5.1 holds and $n \geq 3$. Then the permanent cycles $[v_1 \bar{w}_{2^n}], \ldots, [v_{n-1} \bar{w}_{2^n}]$ are not represented by Chern classes.

Proof. Suppose $[v_i \bar{w}_{2^n}]$ is the Chern class of some representation ξ, which must satisfy (6.2) for some $m = 2^n m'$. Then

$$v_i u^{2^{n-1}} = \text{Res}_N(c_{2^{n-1}2^{k-1}}(\xi)) \mod I^2.$$

But the restriction of the total Chern class of ξ is given by

$$\text{Res}_N(c(\xi)) = 1 + 2m'(u')^{2^{n-1}} \mod (I^2, u^{2^n})$$

$$= 1 + m' (v_1 u^{2^{n-1}+1} + \cdots + v_i u^{2^{n-1}+2^i-1} + \cdots) \mod (I^2, u^{2^n})$$

which does not contain the term $v_i u^{2^{n-1}}$, a contradiction. \qed

Theorem 6.2. Suppose Assumption 5.1 holds and $n \geq 3$. Then $[v_1 \bar{w}_{2^n}], \ldots, [v_{n-2} \bar{w}_{2^n}]$ are not represented by transfers of Chern classes.
Proof. Let H be a subgroup of $D(n)$, and suppose $[v_j w_{2n}] = \text{Tr}_H^{D(n)}(x)$ for some $x \in BP^*(BH)$. By the double coset formula,

$$\text{Res}_N^{D(n)} \text{Tr}_H^{D(n)}(x) = \sum_{g \in N} \text{Tr}_{g^{-1} H g \cap N} \text{Res}_{g^{-1} H g \cap N}(g^* x)$$

where the sum ranges over double coset representatives g of $H \backslash G \cap N$. If H intersects N trivially, then so does any conjugate of H. Hence we need only consider subgroups H containing the center, and the double coset formula evaluates to $|D(n)/H| \cdot \text{Res}_N(x)$. Since this element is represented by

$$\text{Res}_N [v_i w_{2n}] = v_i u^{2n-1} \neq 0 \mod I^2,$$

we get $|D(n)/H| = 2$ and thus $H \cong D(n-1) \times \mathbb{Z}/2$.

The total Chern class $c(\zeta)$ of any representation ζ of $D(n-1)$ restricts as

$$\text{Res}_N (c(\zeta)) = (1 + u')^{2^{n-1}}m = 1 + mu^{2n-1} \mod (I, u^2).$$

Hence we have

$$\text{Res}_N (2c(\zeta)) = 2 + 2mu^{2n-1}$$

$$= (v_1 u^2 + \cdots + v_i u^{2i} + \cdots) + m(v_1 u^{2n-1+1} + \cdots + v_i u^{2n-1+2^{i-1} + \cdots}) \mod (I^2, u^{2n}),$$

which does not contain $v_i u^{2n-1}$. This is a contradiction. \(\square\)

7. $BP^*(\text{BSpin}(7))$

The mod 2 cohomology of $\text{BSpin}(n)$ was computed by Quillen [Q]:

$$H^*(\text{BSpin}(n); \mathbb{Z}/2) \cong \mathbb{Z}/2[w_{2k}(\Delta)] \otimes \mathbb{Z}/2[w_2, \ldots, w_n]/(w_2, Q_0 w_2, \ldots, Q_{h-1} w_2)$$

where Δ is a spin representation of $\text{Spin}(n)$ and 2^h the Radon-Hurwitz number (see [Q] §6).

This is proved by calculating the Serre spectral sequence of the fibration

$$\mathbb{Z}/2 \longrightarrow \text{BSpin}(n) \longrightarrow BSO(n).$$

We consider the case $n = 7$. Then $h = 3$ and the mod 2 cohomology of $\text{BSpin}(n)$ is a polynomial algebra on the Stiefel-Whitney classes w_4, w_6, w_7, w_8 of a spin representation, i.e.

$$H^*(\text{BSpin}(7); \mathbb{Z}/2) \cong \mathbb{Z}/2[w_4, w_6, w_7, w_8].$$
Recall that Spin(7) has the exceptional Lie group G_2 as a subgroup. G_2 contains a rank three elementary abelian 2-subgroup, and its mod 2 cohomology is isomorphic to the rank three Dickson invariants, i.e. $H^*(BG_2;\mathbb{Z}/2) \cong \mathbb{Z}/2[D_1, D_2, D_3]$. Here we may identify the Dickson invariants with the Stiefel-Whitney classes of the restriction of the spin representation to G_2, namely $D_1 = w_4$, $D_2 = w_6$, and $D_3 = w_7$. In particular, we have $H^*(B\text{Spin}(7);\mathbb{Z}/2) \cong \mathbb{Z}/2[D_1, D_2, D_3] \otimes \mathbb{Z}/2[w_8]$.

The Brown-Peterson cohomology of $B\text{Spin}(7)$ is given in [K-Y]. Consider the Atiyah-Hirzebruch spectral sequence

$$E_2^{*,*} = H^*(B\text{Spin}(7);\mathbb{Z}) \otimes BP^* \Longrightarrow BP^*(B\text{Spin}(7)).$$

Since $Q_0w_6 = w_7$ and since there is no higher 2-torsion, the E_2-term is isomorphic to $BP^*[w_4, w_6^2, w_7, w_8]/(2w_7)$. It is shown in [K-Y] that all non-zero differentials are of the form $d_{2m-1} = v_{m-1} \otimes Q_{m-1}$. Indeed,

$$d_3w_4 = v_1w_7, \quad d_7w_7 = v_2w_7^2, \quad d_7w_8 = v_2w_7w_8, \quad d_{15}(w_7w_8) = v_3w_7^2w_8^2.$$

Thus

$$E_16^{*,*} \cong (BP^*[1, 2w_4, 2w_8, 2w_4w_8, v_1w_8]) \oplus BP^*/(2, v_1, v_2)[w_7^2\{w_8^2\}] \oplus BP^*/(2, v_1, v_2, v_3)[w_7^2\{w_8^2\}] \otimes \mathbb{Z}(2)[w_4^2, w_6^2, w_8^2].$$

This page is generated by even degree elements, hence $E_{16} = E_{\infty}$. Note that the reason for the permanency of v_1w_8 is that $d_7w_8 = v_2w_7w_8$ but $d_3(w_4w_8) = v_1w_7w_8$.

Remark. The terms $B/(2, v_1)[w_8]$ in the formulas (6.10) and (6.11) of [K-Y] are typing errors and should be replaced with $B(2, v_1)[w_8]$.

Lemma 7.1. The element $[v_1w_8]$ is not represented by a Chern class, i.e. there is no representation ρ with $[v_1w_8] = c_2(\rho)$.

Proof. This follows from Proposition 6.1 by looking at the commutative diagram

$$0 \longrightarrow \mathbb{Z}/2 \longrightarrow \text{Spin}(7) \longrightarrow SO(7) \longrightarrow 1 \quad \text{or} \quad 0 \longrightarrow \mathbb{Z}/2 \longrightarrow D(3) \longrightarrow (\mathbb{Z}/2)^6 \longrightarrow 0$$

whose rows are central extensions. \qed

The same diagram gives the following theorem as a consequence of Theorem 6.2.
Theorem 7.2. The element $[v_1 \otimes w_8]$ is not represented by the transfer of a Chern class in $BP^*(BD(3))$. □

Similar arguments work for Spin(9) and $D(4)$; in this case the Radon-Hurwitz number is 16.

Theorem 7.3. In $BP^*(BD(4))$, the elements $[v_1 \otimes w_{16}]$ and $[v_2 \otimes w_{16}]$ are not transfers of Chern classes in $BP^*(BD(n))$, $n < 4$.

REFERENCES

FB 7 Mathematik, Bergische Universität-Gesamthochschule Wuppertal, Wuppertal, Germany

E-mail address: schuster@math.uni-wuppertal.de

Department of Mathematics, Faculty of Education, Ibaraki University, Mito, Ibaraki, Japan

E-mail address: yagita@mito.ipc.ibaraki.ac.jp