MULTICURVES AND EQUIVARIANT COBORDISM

N. P. STRICKLAND

ABSTRACT. Let A be a finite abelian group. We set up an algebraic framework for studying
A-equivariant complex-orientable cohomology theories in terms of a suitable kind of equivariant
formal groups. We compute the equivariant cohomology of many spaces in these terms, including
projective bundles (and associated Gysin maps), Thom spaces, and infinite Grassmannians.

1. INTRODUCTION

Let A be a finite abelian group. In this paper, we set up an algebraic framework for studying
A-equivariant complex-orientable cohomology theories in terms of a suitable kind of formal groups.
In part, this is a geometric reformulation of earlier work of Cole, Greenlees, Kriz and others on
equivariant formal group laws [3, 4, 5, 10]. However, the theory of divisors, residues and duality
for multicurves is new, and forms a substantial part of the present paper. Although we focus on
the finite case, many results can be generalised to compact abelian Lie groups. On the other hand,
we have evidence that nonabelian groups will need a completely different theory.

We now briefly recall the nonequivariant theory, using the language of formal schemes de-
veloped in [15]. Let E be an even periodic cohomology theory, and put S = spec(E°) and
C = spf(E°CP{°) = lim spec(E°CP?). The basic facts are

n

(a) C is a formal group scheme over S.

(b) If we forget the group structure, then C is isomorphic to the formal affine line &15 as a
formal scheme over S; in other words, C' is a formal curve over S.

(c) For many interesting spaces X, the formal scheme spf(E°X) has a natural description
as a functor of C; for example, we have spf(E°BU(d)) = C?/X4 = Div} (C), the formal
scheme of effective divisors of degree d on C.

Now let U = Uy be a complete A-universe, and let S4 be the category of A-spectra indexed on
U (as in [11]). Consider an A-equivariant commutative ring spectrum E € S4 that is periodic and
orientable in a sense to be made precise later. In this context, the right analogue of CP*° is the
projective space PY. This has an evident A-action. We put S = spec(E°) and C = spf(E°PU).
This is again a formal group scheme over S, but it is no longer a formal curve. This appears to
create difficulties with (c) above, because we no longer have a good hold on C¢/¥; or a good
theory of divisors on C.

Our first task is to define the notion of a formal multicurve over S, and to show that C is an
example of this notion. Later we will develop an extensive theory of formal multicurves and their
divisors, and show that many statements about generalized cohomology can be made equivariant
by replacing curves with multicurves.

2. MULTICURVES

Definition 2.1. Let X = spf(R) be a formal scheme, and let Y be a subscheme of X. We say
that Y is a regular hypersurface if Y = spf(R/J) for some ideal J = Iy < R that is a free module
of rank one over R. Equivalently, there should be a regular element f € R such that the vanishing
locus V(f) = spf(R/f) is precisely Y.

Let S = spec(k) be an affine scheme.

Definition 2.2. A formal multicurve over S is a formal scheme C over S such that
(a) C = spf(R) for some formal ring R
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(b) There exists a regular element y € R such that for all k¥ > 0, the ideal Ry* is open in R,
and R/y* is a finitely generated free module over Og, and R = 1(£n R/y*.
k

(¢) The diagonal subscheme A C C xg C is a regular hypersurface.
A generator d for the ideal Ia will be called a difference function for C (because d(a,b) = 0 iff
(a,b) € A iff a =b). We will choose a difference function d, but as far as possible we will express
our results in a form independent of this choice. An element y as in (b) will be called a good
parameter on C.

Remark 2.3. If S is a formal scheme, then we can write S =lim S, for some filtered system of
R

affine schemes, and formal schemes over S are the same as compagible systems of formal schemes

over the S, by [15, Proposition 4.27]. In the rest of this paper, we will generally work over an

affine base but will silently use this result to transfer definitions and theorems to the case of a

formal base where necessary.

The formal affine line &15 = spf(k[z]) is a formal multicurve, and the category of formal
multicurves is closed under disjoint union. Conversely, condition (c¢) implies that the module
QIC /s = In /I is free of rank one over R = O¢, so formal multicurves may be thought of as being
smooth and one-dimensional. Similarly, if y is a good parameter then R is a finitely generated
projective module over k[y], which means that C' admits a finite flat map to K}g, again indicating
a one-dimensional situation. If k is an algebraically closed field, we shall see later that every small
formal multicurve over S is a finite disjoint union of copies of 1&}9

Remark 2.4. Note that Ia is the kernel of the multiplication map p: R®R — R, which is split
by the map a — a ® 1. It follows that Ia is topologically generated by elements of the form
a®b—ab® 1. We also see by similar arguments that for any ideal J < R, the kernel of the
multiplication map (R/J) ® (R/J) — R/J is just the image of I and thus is generated by d.

Definition 2.5. A formal multicurve group over S is a formal multicurve over S with a commu-
tative group structure.

In the presence of a group structure, axiom (¢) can be modified.

Definition 2.6. Let C' be a commutative formal group scheme over S. A coordinate on C is a
regular element © € O¢ whose vanishing locus is the zero-section. Clearly, such an x exists iff the
zero-section is a regular hypersurface.

Remark 2.7. If z is a coordinate, then so is the function T defined by Z(a) = z(—a).

Proposition 2.8. Let C be a formal group scheme over S satisfying azioms (a) and (b) in
Definition 2.2. Then C' is a formal multicurve iff the zero-section S — C' is a regular hypersurface.
More precisely, if x is a coordinate on C, then the function d(a,b) = (b — a) defines a difference
function, and if d is a difference function, then the function x(b) = d(0,b) is a coordinate.

The proof relies on the following basic lemma.

Lemma 2.9. Let C be a formal multicurve, and let f: X — C be any map of schemes. Then the
function d'(z,b) = d(f(z),b) on X xg C is regular in Ox x ¢

Proof. We have a short exact sequence as follows:
R®R X% RGR & R,
We regard R®R as a module over R via the map t — ¢ ® 1. The map p is then R-linearly split

by the map t — t ® 1, so the sequence remains exact after applying the functor Ox® r(—). The
resulting sequence is just

Oxxsc 25 Oxxs0 = Ox,
which proves the lemma. O
Corollary 2.10. Let C % S be a formal multicurve, and let S 2 C be a section. Then the
subscheme uS C C is a regular hypersurface, and the ideal I,s is generated by the function
d'(c) = d(u(q(c)),c), or equivalently
d=(C=8xsC2LCxgCL A
Proof. Take X = S in the lemma. a
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Proof of Proposition 2.8. First suppose that the zero section is a regular hypersurface, so we can
choose a coordinate z. It follows easily from axiom (b) that R ~ [];2, Os as topological Og-
modules, so RQR = [Tr, R as R-modules, so 1®z is a regular element in R® R. If we regard z as
a function on C, this says that the function z; : (a, b) — x(b) is a regular element of O¢x ,¢, whose
vanishing locus is precisely the closed subscheme where b = 0. The map s: (a,b) — (a,b—a) is an
automorphism of C' xg C, and s*z; is the function d(a,b) = z(b — a). As s is an automorphism,
we see that d is regular and its vanishing locus is the subscheme where a = b, or in other words
the diagonal.

The converse is the case u = 0 of Corollary 2.10. |

To formulate the definition of an equivariant formal group, we need some basic notions about
divisors.

Definition 2.11. A divisor on C is a scheme of the form D = spec(O¢/J), where J is an open
ideal generated by a single regular element, and O¢/J is a finitely generated projective module
over Og. Thus D is a regular hypersurface in C' and is finite and very flat over S. Strictly
speaking, we should refer to such subschemes as effective divisors, but we will have little need for
more general divisors in this paper.

If D; = spf(R/J;) is a divisor for ¢ = 0,1 then we put Do + Dy := spf(R/(JoJ1)), which is
easily seen to be another divisor.

The degree of D is the rank of Op over k. Note that this need not be constant, but that S can
be split as a finite disjoint union of pieces over which D has constant degree.

If T is a scheme over S, then a divisor on C over T means a divisor on the formal multicurve
T xgC overT.

Note that if D is an effective divisor of degree one, then the projection D =+ S is an isomorphism,

so the map S ”—1> D c C is a section of C. Conversely, if u: S — C is a section, then (by
Corollary 2.10) the image S is a divisor of degree one, which is conventionally denoted by [u].

In the case of ordinary formal curves, it is well-known that there is a moduli scheme Divj(C)
for effective divisors of degree d on C, and that it can be identified with the symmetric power
C?/%4. Analogous facts are true for multicurves, but much more difficult to prove. We will return
to this in Section 14.

Let A be a finite abelian group (with the group operation written additively). We write A* for
the dual group Hom (A4, Q/Z).

Definition 2.12. Let X = spf(R) be a formal scheme, and let Y = spf(R/J) be a closed formal
subscheme. We say that X is a formal neighbourhood of Y if R is isomorphic to 1<£n R/J™ as a

topological ring, or equivalently X = lim spf(R/J™), which essentially means that every point
——m

in X is infinitesimally close to Y.

Definition 2.13. An A-equivariant formal group or A-efg over a scheme S is a formal multi-
curve group C over S, together with a homomorphism ¢: A* — C, such that C is the formal
neighbourhood of the divisor
[6(4%)] := Y [#(a)] C C.
a€A*
Remark 2.14. The notation ¢: A* — C really means that ¢ is a homomorphism from A* to the
group of sections of the projection C' = S. Equivalently, we have a group scheme

A*x S = H S:spec(H Os)
aeA* acA*
over S, and ¢ gives a homomorphism A* x S — C of group schemes over S.
Now choose a coordinate z on C, and put d(a,b) = x(b—a). For any a € A* we have a function
Zo on C defined by z4(a) = z(a — ¢(a)) = d(¢(a),a). More precisely, z, is the composite

#(a)xs1 C xgC subtract C Z AL

The vanishing locus of z,, is the divisor [¢(a)], so the vanishing locus of the product y =[], 4
is the divisor [¢(A*)]. We see using Corollary 2.10 that y is a regular element in O¢. The final
condition in Definition 2.13 says that y is topologically nilpotent. It is not hard to deduce that y
is a good parameter on C.

C=S8x%xsC
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Proposition 2.15. Let f be a monic polynomial of degree d > 0 over Og, and let R be the
completion of Oglz] at f. Then the scheme C = spf(R) = h_r}n V(f*) C AL is a formal multicurve.
k

Proof. Condition (b) is clear, because {z! | i < dj} is a basis for R/(f7) over Os. Next, observe
that
R~ Oslyll=]/(f(z) —y) = Oslyl{=" | i < d},
S0
R®R ~ Os[yo, y1llxo, #1]/(f (z0) — yo, f (#1) — y1) = Oslyo, 1 {zh=] | i,5 < d}.

It is clear that y; — yo is not a zero-divisor in this ring, and z; — x( divides y; — yo so it is also
not a zero-divisor. It is not hard to check that the multiplication map RQR — R induces an
isomorphism (R®R)/(z1 — xo) ~ R, and it follows that 21 — ¢ generates Ia, and thus that (c)
holds. |

Definition 2.16. We say that a formal multicurve C over S is embeddable if it has the form
1i_n>1 V(f*) as above for some monic polynomial f.
k

Lemma 2.17. Suppose that k = Og is an algebraically closed field, and that C is a formal
multicurve over S. Then C is a finite disjoint union of copies of A, and is embeddable.

Proof. Let y € R be a good parameter. Then the ring R := R/y is a finite-dimensional algebra
over the field k, so it splits as a finite product of local algebras. As R is complete at (y) we can lift
this splitting to R, which splits C' as a disjoint union, say C = C; II...II C,.. It is easy to see that
each Cj is a formal multicurve. Put R; = O¢,, so R = R; X ... x R,. Let y; be the component
of y in R; and put R; = R;/y;, so R = Ry x ... x R,. Moreover, R; is local, with maximal
ideal m; say. As k is algebraically closed we see that R;/m; = k. This gives an augmentation
u;: Ry = k, or equivalently a section u;: S — C;. It follows from Corollary 2.10 that the kernel
of u} is generated by a single regular element, say z;. This means that the image of z; in R;
generates m;, so R; ~ k[z;]/z for some m, and thus y; divides zI". On the other hand, we clearly
have u*(y;) = 0 so z; divides y;. It is now easy to check that R; = k[z;], so C; =~ ;&15

Finally, as k is algebraically closed, it is certainly infinite, so we can choose distinct elements
Ay, Ar € kosay. If we put f(z) = [[,(x — X\;) we find that the completion of k[z] at (f) is
isomorphic to [];_, k[z] and thus to O¢. This proves that C is embeddable. O

3. DIFFERENTIAL FORMS

We next recall some basic ideas about differential forms, and record some formulae that will be
useful later in our study of residues.
Given a formal multicurve C over S, we put

Q= 0Lys = Ia/13,

and call this the module of differential forms on C.

We also put Ay = spf(Ocxsc/IX), and regard this as the second-order infinitesimal neigh-
bourhood of A in C' xg C. In these terms, Q is the module of functions on A, that vanish on
A.

Given a difference function d € Ia, we let a be the image of d in Q; this generates Q) freely as
a module over O¢, so we can regard ) as a trivialisable line bundle on C.

For any function f € O¢, we write df for the image of 1 ® f — f ® 1 in 2, or equivalently the
function (a,b) — f(b) — f(a) on Ay. As usual, we have the Leibniz rule

d(fg) = fd(g) + gd(f)
Now suppose that C' has a commutative group structure. In particular, this gives a zero-section
Z C C, and we write Z = spec(O¢/I%) and
w = I /1% = { functions on Z» that vanish on Z }.
The map b — (0,b) gives an inclusion Z2 — Ao and thus a map Q — w, which in turn gives an
isomorphism Q|z = w of line bundles on S. The image of df under this map is the element do f
corresponding to the function b — f(b) — f(0) on Zs. If z is a coordinate on C, then doz generates

w freely as a module over Og.
Next, for any function f € O¢ we define a function Df on A, by

(Df)(a,b) = f(b—a) - f(0).
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This construction gives a map D: O¢ — Q. If z is a coordinate then Dz is the restriction of the
usual difference function d(a, b) = z(b — a) to Az, so it is a generator of .

It is easy to see that D f depends only on dgf, and thus that D induces an Og-linear inclusion
w — , right inverse to the restriction map Q@ — Q|z = w. A differential form is said to be
invariant if it lies in the image of this map.

By extension of scalars, we obtain an O¢-linear map O¢ Qo w — 1, sending f ® dog to fDg.
In particular, it sends f ® dpz to fDz, and so is an isomorphism.

4. EQUIVARIANT PROJECTIVE SPACES

We now start to build a connection between multicurves and A-equivariant topology (where A
is a finite abelian group). Naturally, this involves the generalised cohomology of the projective
spaces of representations of A. In this section, we assemble some facts about the homotopy theory
of such projective spaces.

For a € A* = Hom(A, Q/Z) we write L, for C with A acting by a.z = €>™**(®) 2. In particular,
Lo has trivial action, and Ly ® Lg = Loyg. For any finite-dimensional representation V', we put

Vie|]={veV |av= e2m(a)y for all a € A}

It is well-known that V = @, V]a] and Homgy4)(V, W) = P, Home(V[a], W[a]). It follows that
if there exists an equivariant linear embedding V' — W, then the space of such embeddings is
connected, giving a canonical homotopy class of maps PV — PW of projective spaces.

We write U[a] = Lo ® C°, and U = Uy = @, U[a], so U is a complete A-universe. We
write PU for the projective space associated to U, which has a natural A-action. By the previous
paragraph, for any finite-dimensional representation V, there is a canonical map PV — PU up to
homotopy. Similarly, the space of equivariant linear isometries i ® U — U is contractible, which
gives a canonical homotopy class of maps PU x PU — PU, making PU an abelian group up to
equivariant homotopy. We can choose a conjugate-linear equivariant automorphism x: U — U,
and the resulting map PU — PU is the negation map for our group structure.

It is well-known that PU is the classifying space for equivariant complex line bundles. More
precisely, for any A-space X, we write Pica (X) for the group of isomorphism classes of equivariant
complex line bundles over X. Let T denote the tautological line bundle over PU, so T' € Pic(PU).
Then for any A-space X, the construction [f] — [f*T] gives a group isomorphism [X, PU]4 ~
Pic4(X). Note that we regard T as the universal example; some other treatments in the literature
use the dual bundle T* = O(1) instead.

Note that A acts by scalars on U[a], and thus acts as the identity on PU[a] C PU. Moreover,
the map L — L, ® L gives a homeomorphism CP* = P(C*) — PU[a]. Using this, we have
a homeomorphism (PU)4 = A* x CP*, and thus a bijection 7o ((PU)?) = A*, which is easily
seen to respect the natural group structures. Thus, the group structure on Pl gives a translation
action (up to homotopy) of A* on PU. We write 7,: PU — PU for translation by an element
a € A*.

For various purposes we will need to use an A-fixed basepoint in PUY. We have embeddings
L, = U[a] = U, and PL, is an A-fixed point. Any other fixed point lies in the same component
of (PU)A as PL, for some a, so it can be replaced by PL, for most purposes. Moreover, the
map 7, gives a homotopy equivalence of pairs (PU, PLg) — (PU,PLyyp). Where not otherwise
stated, we use PLg as the basepoint.

Proposition 4.1. Let V, W and X be unitary representations of A, where V and W have finite
dimension and X is a colimit of finite-dimensional subrepresentations. Put U =V & W & X.
Then there is a homotopy-commutative diagram as follows, in which the maps marked q are the
obvious collapses, the maps marked j are the obvious inclusions, and § is the diagonal map.

PU d PU x PU

wvew qv Nagw

PU/P(V ®W) ——— P(V © X)/PV AP(W & X)/PW —_— PU/PV A PU/PW

Moreover, if dim(X) = 1 then § is just the standard homeomorphism
SHom(X,VGBW) — SHom(X,V) A SHom(X,W)-
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All maps and homotopies are natural for isometric embeddings of V., W and X.
Remark 4.2. The above diagram gives a map
5" E*(P(V @ X),PV)® E*(P(W @ X),PW) — E*(PU,P(V & W)).

In his unpublished thesis [3], Cole writes a x b for 5 (a ®b). The idea of using this construction
seems to be original to that thesis; our approach differs only in being somewhat more geometric.

Proof. Assume for the moment that X is finite-dimensional. We start by defining a map
¥: PU/P(V®W) — PU/PV A PU/PW,

which will be homotopic to (j A j) o 8. For u = (v,w,z) € UX := U \ {0} we put
s = s(u) = ([lwll = llvl) /o]l + [lwl] + [l])-

Note that s(u) € [-1,1], and s(Au) = s(u) for all A € C*, and s(u) > 0 iff ||w]| > ||v||. We next
define a, 8: U* — U by

(v, w,z) = ((1 = s)v, sw,x) %f s>0
(v,0,z) ifs<0
if s >
fw,w,z) = § 000 e20
(—sv,(1+ s)w,z) if s <0.

Note that a(lu) = Aa(u) and similarly for §.

We claim that when u # 0, the line joining u to a(u) never passes through 0 (so in particular
a(u) # 0). Indeed, if s < 0, then the points on the line have the form (v, tw, z) for 0 < ¢ < 1. Thus,
the line can only pass through zero if v = x = 0. The relation s < 0 means that ||w|| < ||Jv|| = 0,
so w = 0 as well, contradicting the assumption that u # 0. In the case s > 0, the points on the
line have the form ((1 —¢s)v, (1 —t + ts)w,z). Ass >0and 0 <t <1 we have 1 —¢t +ts > 0.
For the line to pass through zero we must thus have £ = w = 0, and the relation s > 0 means
that ||v|| < ||w|| = 0, again giving a contradiction. Similarly, the line from u to 8(u) never passes
through 0.

It follows that a and f induce self-maps of PU that are homotopic to the identity, so the map
v =(a,p): PU — PU x PU is homotopic to the diagonal map d.

Next, note that if u € V @ W, then for s > 0 we have y(u) € U x W, and for s < 0 we have
v(u) € V x U. Tt follows that the induced map on projective spaces has

~y(P(V e W)) C (PU x PW)U (PV x PU),
so there is an induced map
5: PU/P(V@®W) — PU/PV A PU/PW.
As # is homotopic to §, we see that 7o gvew =~ (qv A qw) 0 4.
To construct the map J, we need a slightly different model. Clearly
PU\P(VeW)=(VxWxX*)/C* =(V xW x S(X))/S*,
and PU/P(V @ W) is the one-point compactification of this. Similarly, P(V & X)/PV A P(W &

X)/PW is the one-point compactification of the space (V x S(X))/S* x (W x S(X))/S'. We can
thus define § by giving a proper map

VxWxSX)—=>VxSX)xWxS(X)
with appropriate equivariance. The map in question just sends (v, w,z) to (v,z,w, ).

If X is one-dimensional and (v,z) € V x S(X) then we have a linear map a: X — V given
by a(z) = v, which does not change if we multiply (v,z) by an element of S'. This gives a
homeomorphism (V' x S(X))/S* = Hom(X, V), and thus P(V & X)/PV = SHom(X:V) Tt is casy
to see that with this identification, ¢ is just the standard homeomorphism

SHOm(X,VEBW) — SHom(X,V) A SHom(X,W)_

We now show that (j A j) o6 ~ 7. Put
T = {((vo, w0, %0), (v1,w1,21)) € U | [|(wo, zo)[| = [|(v1, 21)]| = 1},
so that PU/PV A PU/PW is the one-point compactification of T'//(S! x S!). Define maps
Op: VxWxSX)—=T
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for 0 <t <1by
w,@,w,x)) if s>0

bww,z) =4 b Terwal
’ ’ (_ t 7(1+ t) ] ) 1
(v,0,2), Spliestiusl) g s <o,
where s = (||w]| — ||Jv]])/(l|v]| + [|w]| + ||z||) as before. We claim that these maps are proper. To

see this, put
v((vo, wo, %), (vi, w1, 1)) = max(||vol|, [lwi ),
and Ty, = {t € T | v(t) < k}. It is easy to see that every compact subset of T is contained in some
T}, so it will be enough to show that 9;1Tk is compact. In the case s > 0 we have 0 <1—st <1
and [|(stw, z)|| > |lz|| = 1 so [[((1 = st)v/||(stw, z)|)I| < [[v]] < [lw]l, so v(fe(v,w,z)) = [lw]|.
Similarly, when s < 0 we have v(0;(v,w,z)) = ||v||, so in general v(8;(v,w,z)) = max(||v||, ||w]])-
It follows immediately that 6; is proper, and we get an induced family of maps
0:;: PU/P(V @ W) — PU/PV AN PU/PW.

It is easy to see that 6y = (j Aj) o0& and #; = 7. The proposition follows easily (for the case where
X has finite dimension).

If X has infinite dimension, we apply the above to all finite dimensional subrepresentations of

X. We see by inspection that all constructions pass to the colimit, so the conclusion is valid for
X itself. a

By an evident inductive extension, we obtain the following:

Corollary 4.3. Let Ly, ..., Ly be one-dimensional representations of A, and let X be as above.
PutY =@, L; and U =Y ® X. Then there is a homotopy-commutative diagram as follows:

PU d PU"

pu/py — \PLi®X)/PL; ___, )\ PU/PL;
g i J i

Moreover, if dim(X) = 1 then & is just the standard homeomorphism
SHOm(X,Y) — AsHom(X,Li). O
i

We conclude with some further miscellaneous observations about the space PU.

Proposition 4.4. The space PU is equivariantly equivalent to F(EA,,CP>) (where CP™ is the
usual space with trivial A-action). Equivalently, PU is the second space in the Borel cohomology
spectrum F(EA,, H), so [X, PU]* = H*(Xya) for any A-space X. Moreover, the space QPU is
equivariantly equivalent to S with the trivial action.

Proof. There is an evident inclusion CP*® = P(U{*) — (PU)* — PU. This is a nonequivariant
equivalence, and so gives an equivariant equivalence F(EA,,CP*®) — F(EA4,PU). On the
other hand, the collapse map EA, — S° gives a map j: PU — F(EA,,PU) ~ F(EA,,CP>).
We claim that this is an equivalence. Indeed, if we take fixed points for a subgroup 49 < A we
get a map Af x CP>* — F((BAy)y+,CP>) of commutative H-spaces. It is clear that

Ay ifk=0
(A5 x CP®) =< Z fk=2
0 otherwise.

On the other hand, we have

1 F((BAg),CP™®) = [S*(BA)4, K(Z,2)] = H* *BA,.
This clearly vanishes for £ > 2 and gives Z for £ = 2. Standard arguments with the coefficient
sequence Z — Q — Q/Z give H' BAy = 0 and H2BAy = A}, showing that 7. F((BAg)+, CP>) is
abstractly isomorphic to 7. (A§ x CP>). With a little more work one sees that the isomorphism

is induced by j, and the first part of the proposition follows.
We now see that

QPU ~ QF(EA,,CP®) = F(EA,,QCP>) = F(EA,,S").
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As above we find that
Z ifk=1

Wk(F(EA-i—aSl)AO) = Hl_kBAO - {0 otherwise

It follows that the obvious map S — F(EA,,S") is an equivariant equivalence. O

Proposition 4.5. Let T be the tautological line bundle over PU, and let S(T™) be the unit circle
bundle in the n’th tensor power of T. Then S(T™) is equivariantly equivalent to F(EA,, B(Z [n)).

Proof. Tt is well-known that in the case A = 0 we have S(T") = B(Z/n) = K(Z/n,1). In the
general case, note that S(T™) consists of pairs (L,u) where L € PU and w € L™ and |ju|| = 1.
Suppose that (L,u) is fixed by a subgroup A9 < A. We see that Ag acts on L by some character
a € Aj, so Ap acts on u by na, but u is fixed so na = 0. Given that na = 0, we see that every
point in L" is fixed by Ay. Using this, we see that S(T™)4c = A}[n]x B(Z /n), where A}[n] denotes
the subgroup of points of order n in A}. Using this, we find that 7, S(T™)4° = H'=*(BAo;Z/n),
and the claim follows by the same method as in the previous proposition. |

Proposition 4.6. Put F = {B < S x A | BN S' = {1}}, which is a family of subgroups of
S x A. Then the unit sphere S(U) is a model for EF, and so PU = (EF)/S*.

Proof. First, we let S* C C* act on S(U) by multiplication, and let A act in the usual way.
These actions commute and so give an action of S x A. We need only check that S(i) has the
characterizing property of EF, or in other words that S(U)® is contractible for B € F and empty
for B ¢ F. If B € F then BN S! is trivial so B is the graph of a homomorphism ¢: Ag — S* for
some subgroup Ag < A. Put

V={veU|av=q¢a) " vforallac Ay},

so SU)P = S(V). As U is a complete Ap-universe, we see that V is infinite dimensional, and so
S(V) is contractible as required. On the other hand, as S* acts freely on S(i{), it is clear that
SU)B = ) whenever B ¢ F. O

5. EQUIVARIANT ORIENTABILITY

Now let E be a commutative A-equivariant ring spectrum. We next need to formulate suitable
notions of orientability and periodicity for E, and deduce consequences for the rings E* PV. Our
results differ from those of [3] only in minor points of technical detail. We start by introducing
some auxiliary ideas.

Definition 5.1. Let R be an E-algebra spectrum, and M a module spectrum over R. We
say that M is a free R-module if it is equivalent as an R-module to a wedge of (unsuspended)
copies of R, or equivalently, there is a family of elements e; € mgM such that the resulting maps
@,x"A/By, R] — [E"A/B,, M] are isomorphisms for all n € Z and all B < A. We say that such
elements e; are universal generators for for g M over moR. We will often leave the identification of
R and M implicit. For example, if we say that an element e is a universal generator for E°(X,Y)
over EOX, we are referring to the case R = F(X4,E) and M = F(X/Y,E).

Definition 5.2. Let FE an A-equivariant ring spectrum, and consider a class ¢ € E°(PU, PLy).
For any a € A* we can embed L, @ Lg in U, and thus restrict x to get a class ur, € E°(P(L, @
Ly),PLy) = E°SL«_ This in turn gives an E-module map mq: S E — E.

We say that = is a complex coordinate for E if for all a the map m, is an equivalence, or
equivalently uy_ generates ¥~ L= E as an E-module. We say that E is periodically orientable if it
admits such a coordinate. We say that E is evenly orientable if in addition, we have m; E = 0.

From now on, we assume that F is periodically orientable. We choose a complex coordinate =,
but as far as possible we state our results in a form independent of this choice. We write T = x*z,
where x: PU — PU is the negation map for the group structure. It is easy to see that this is
again a coordinate.

Recall that for any line bundle L over X, there is an essentially unique map fr: X — PU with
f*T ~ L (where T is the tautological bundle over PU). We define the Fuler class of L by

e(L) = fr-(x) = fL(T).
Thus, the element z € E°PUY is the Euler class of T*, and T is the Euler class of T'.
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Remark 5.3. There is some inconsistency in the literature about whether e(L) should be fj ()
or ff(Z). The convention adopted here is the opposite of that used in [15], but I believe that it is
more common in other work and has some technical advantages. The conventions used elsewhere
in this paper are fixed by the following requirements.

(a) We have e(V @ W) =e(V)e(W).

(b) The Euler class of V' is the restriction of the Thom class in E°XV to the zero section

XcxVv.

Our substitute for the nonequivariant theory of Chern classes will be more abstract, so we will
not need sign conventions. The role normally played by the Chern polynomial }°, ti=dim(V) +e;x?
will be played by a certain element fy;if A =0and V =@, L; then fv = [[,(z +F e(L;)).

Next note that we can define
T4 =1, o € E°(PU, PL,).

Because
(T* 1) =(L_a®T)* =Lo®T* =Hom(T, L,),

we have z, = e(Hom(T, L,)). If L is a one-dimensional representation isomorphic to L, we also
use the notation zr, for . We can identify EO(P(Lg @ Ly), PL,) with E9SLs-= and we find
that z, restricts to ug_q, which is a universal generator.

Now consider a finite-dimensional representation V' of A. We have a canonical homotopy class of
embeddings PV — PU, and thus a well-defined group E°(PU,PV). We can write V as @;.121 L;,
and Corollary 4.3 gives a map

PU/PV - )\ PU/PL;

compatible with the diagonal. Using this, we can pull back zr, A... Az, to get a class xy €
E°(PU,PV) that maps to []; 2o, in E°PU. Note that for any representation W containing V we
can choose an embedding W — U and pull back zy along the resulting map PW — PU to get a
class in E°(PW, PV), which we again denote by zy .

Lemma 5.4. Let V < W be complex representations of A, with dim(W/V) = 1. Then zy is a
universal generator for E°(PW,PV).

Proof. Write V.= L1 @ ... ® Lq as before, and X = W o V,so W =V & X and PW/PV =
SHom(X,V) = A gHom(X,Li)  Because z is a complex coordinate, we know that 21, € E°(PW, PL;)
restricts to a universal generator v; of SHo™(X:L4) Tt follows from Corollary 4.3 that zv = [, v; €
E0gHom(X.V) — EO(PW, PV), and this is easily seen to be a universal generator. O

Corollary 5.5. Let 0 =Uy < Uy < ... < Uz = U be representations of A with dim(U;) =i. Then
{zv, | i < d} is a universal basis for E°PU over E°.

Proof. This follows by an evident induction from the lemma. a

Remark 5.6. As T is another coordinate, it gives rise to another universal basis {Zy, | ¢ < d} for

E°PU, which is sometimes more convenient.

We record separately some easy consequences that are independent of the choice of flag {U;}:

Proposition 5.7. Let U be a d-dimensional representation of A. Then
(a) F(PU4,E) is a free module of rank d over E.
(b) If U =V @ W then the restriction map F(PU,,E) — F(PV,, E) is split surjective. The
kernel is a free module of rank one over F(PW,, E), generated by xv . |

We now put S = spec(E°) and R = E°PU and C = spf(R). We must show that C is an
equivariant formal group over S.
We first exhibit a topological basis for R. We can list the elements of A* as

A* = {OLO :0,a1,...,an_1}

(where n = |A|), and then define a4, for all £ > 0 by aniy; = ;. We then have an evident
filtration
0=V <Vi<W<...<U=1imV,
—
k
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where Vi = €,y La,- If we put e, = 2y, we find that {e; | 0 < i < k} is a universal basis for
E°PV, and it follows by an evident limiting argument that {e; | i > 0} is a universal topological
basis for E°PU, giving an isomorphism F(PUy, E) =[], E. If we put y = zgja] = Zv, = en, it
is easy to see that e,;y; = y'e;, and it follows that EOPU is a free module over E°[y] with basis
{ei | i < n}. Thus, conditions (a) and (b) in Definition 2.2 are satisfied.

Next, we have

F(PU3,E) = F(PUy,F(PU,, E)) = F(PU., [ B) = [ E.
J
By working through the definitions, we deduce that the elements e;®e; form a universal topological
basis for E°(PU x PU), so E°(PU x PU) = R®R, so spf(E°(PU x PU)) = C xs C. As PU is
an commutative group up to equivariant homotopy, we now see that C' is a commutative formal
group scheme over S.

Now note that e; is just the coordinate z, and this divides e for all £ > 0. In particular it
divides y, which is a regular element in R, so z is also a regular element. It is also now easy to
see = generates the ideal E°(PU, PLy), which is just the augmentation ideal in the Hopf algebra
R, so the vanishing locus of z is the zero-section in C. Thus z is a coordinate on C, showing (via
Proposition 2.8) that C is in fact a formal multicurve group.

Next, recall that mo((PU)4) = A*, which gives a map A* — PU of groups up to homotopy, and
thus a map ¢: A* — C of formal group schemes. By working through the definitions, we see that
the image of the section ¢() is the closed subscheme spec(E°PL,) = spec(R/z4), so the divisor

D=3, [p(a)] is
spec(R/ Hwa) = spec(R/y) = E°PC[A].

As y is topologically nilpotent, we see that any function on C that vanishes on D is topologically
nilpotent, so C' is a formal neighbourhood of D. We have thus proved the following result:

Theorem 5.8. Let E be a periodically orientable A-equivariant ring spectrum. Then the scheme
C := spf(E°PU) is an A-equivariant formal group over S := spec(E°). d

Remark 5.9. We have Iy = {f € O¢ | f(0) = 0} = E°(PU, PC), and thus I = E°(PU, P(C®
©)), and thus

w=1Iy/I? = E°(P(C&C),PC) = E°S? = m,E.
6. SIMPLE EXAMPLES

Let C be a nonequivariant formal group over a scheme S, so C is the formal neighbourhood of
its zero section. For any finite abelian group A, we can of course let ¢: A* — C be the zero map,
and this gives us an A-equivariant formal group. More generally, any homomorphism A* — C
will give an A-efg, although often there will not be any homomorphisms other than zero.

Now suppose that C is the formal group associated to a nonequivariant even periodic ring
spectrum E. We then have an A- -equivariant ring spectrum F = F(A+, E) (which the Wirthmiiller
isomorphism also identifies with A, A E). This satisfies E*X = E* res(X), where res: Sy — Sy is
the restriction functor. It follows easily that E is periodically orientable, and that the associated
equivariant formal group is just c , equipped with the zero map ¢: A* — C as above.

For a slightly more subtle construction, suppose we allow S to be a formal scheme, and assume
that some prime p is topologically nilpotent in Og. Suppose also that the formal group C has
finite height n. Put S’ = Hom(4*, C); it is well-known that Og is a free module of rank |A|™ over
Os, so S’ is finite and flat over S. By definition, S’ is the universal example of a formal scheme T
over S equipped with a homomorphism from A* to the group of maps T' — C of formal schemes
over S, or equivalently the group of sections of T' xg C over T. If we put C' = §' xg 5, there is
thus a tautological map ¢: A* — C'. Here C’ is an ordinary formal group over S’ and thus is the
formal neighbourhood of its zero section. It follows that (C’, ¢) is automatically an A-equivariant
formal group over S’.

Now suppose we have a K (n)-local even periodic ring spectrum E. We give the ring mo &
the natural topology as in [8, Section 11] — in most cases of interest, this is the same as the
I,-adic topology. We then put S = spf(moE) and C = spf(E°CP>), which gives an ordinary
formal group of height n over S. Let EA denote a contractible space with free A-action, and put
E=F(EA;, E) This is a commutative A-equivariant ring spectrum, with E*X = E*X),4, where
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Xpa denotes the homotopy orbit space or Borel construction. In particular, we have E°(point) =
EOBA, and it is well-known that this is canonically isomorphic to (’)Hom( A%,0)" Next, observe
that we have an A-equivariant inclusion PU[0] — PU, which is nonequivariantly a homotopy
equivalence, so the map EA x PU[0] - EAx PU is an equivariant homotopy equivalence. It follows
that E*PU = E*PU[0) = E*(BA x CP®) = E*BA @, E*CP™, and thus that spf(E°PU) =
Hom(A*, 5) x C. This shows that the equivariant formal group associated to FE is just the pullback
C'=S5"xg C as discussed above.

7. FORMAL GROUPS FROM ALGEBRAIC GROUPS

We now show how to pass from algebraic groups (in particular, elliptic curves or the multiplica-
tive group) to equivariant formal groups.

7.1. The multiplicative group. Let S = spec(k) be a scheme, and consider the group scheme
Gy x S = spec(k[u,u~1]) over S. Suppose we are given a homomorphism ¢ from A* x S to G,,, x S
of group schemes over S, or equivalently a homomorphism ¢: A* — k> of abstract groups. We

can then form the divisor
D= Z[(b = spec(k[u™"]/y),

where y =[] (1 —u/d(a)). It is convenlent to observe that u is invertible in kfu]/y and thus in
k[u]/y™ for all m, so D can also be described as spec(k[u]/y). We then define C' to be the formal
neighbourhood of D in G, x S, so

C = lim spec(k[u]/y™) = spf(k[ul}),
m
which is an embeddable formal multicurve. It is easy to see that this is a subgroup of G, x S and
is an equivariant formal group, with coordinate x =1 — u.

The universal example of a ring with a map A* — k> is k = Z[A*], which can be identified with
the representation ring R(A). Thus, the universal example of a scheme S with a map A* x S —
Gy, x S as above is S = Hom(A*,G,,) = spec(R(A)). We can apply the above construction in this
tautological case to get an equivariant formal group C' over Hom(A*,G,,). Explicitly, if we let
Vo € Z[A*] be the basis element corresponding to a € A* and put y = [[,(1 —uv_o) € Z[A*][u],
then C' = spf(Z[A*][u]y)).

Theorem 7.1 (Cole-Greenlees-Kriz). The A-efg associated to the equivariant complex K -theory
spectrum K 4 is isomorphic to the A-efg C over Hom(A*, G,,) constructed above.

Proof. This is just a geometric restatement of [4, Section 6]. It is proved by identifying K% PU
with K% o EF, (where F = {B < Ax S'| BN S' = {1}} as in Proposition 4.6) and applymg
a suitable completion theorem.

7.2. Elliptic curves. We now carry out the same program with the multiplicative group replaced
by an elliptic curve (with some technical conditions assumed for simplicity). Suppose that we are
given a ring k and an element A € k, and that 2, A and 1 — A are invertible in k. Let C be
the elliptic curve given by the homogeneous cubic y® = z(z — 2)(z — A2), so the zero element is
=[0:1:0], and the points P:=[0:0:1], @ :=[1:0:1] and R := [A: 0 : 1] are the three
pomts of exact order two in C. Define rational functions ¢ and  on C by t([z : y : 2]) = z/y and
r([z : y : 2]) = z/y. One checks that the subscheme U = C \ {P,Q, R} is the affine curve with
equation r = t(t — r)(t — Ar), and that on U, the function ¢ has a simple zero at O and no other
poles or zeros.

Now let A be an abelian group of odd order n, and let ¢: A* — C be a homomorphism. Define

V =N, (U + ¢(a)), which is an affine open subscheme of U.

Lemma 7.2. For each § € A*, the section ¢(8): S — C actually lands in V.

Proof. We first show that for all v € A*, the section ¢(v) lands in U. Put D = [P] + [Q] + [R],
soU=C \ D. Let T be the closed subscheme of points s € S where ¢(v)(s) € D; we must show
that T'= 0. As n is odd and D is the divisor of points of exact order 2, we see that multiplication
by n is the identity on D, but of course n.¢(a) = O. We conclude that over T' we have O € D.
As 2 is invertible in k we know that O and D are disjoint, so T = () as required.

We now apply this to v = 8 — a to deduce that ¢(8) € U + ¢(a). This holds for all a, so
#(B) € V as claimed. O
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We now define C' to be the formal neighbourhood of the divisor D = 3" _[¢(a)] in V. If we put
s(a) =[], t(a—¢(e)) then s € Oy and the vanishing locus of s is just D, so we have O¢ = (Ov)5.
Using this, we see that C' is an equivariant formal group, with coordinate ¢ and good parameter s.

Now suppose instead that we are given a curve C' over S as above, but not the map ¢: A* = C.
We can then consider the scheme S; = Hom(A*, C), which is easily seen to be a closed subscheme
of Map(A*,U) and thus affine. We can thus pull back C to get a curve Cy over S; equipped
with a tautological map ¢: A* — 61, and we can carry out the previous construction to get an
equivariant formal group C; over Si. This should be associated to some kind of A-equivariant
elliptic cohomology theory. It is not hard to construct a suitable theory if Og is a Q-algebra;
see [18], for example. For more general base schemes, little is known.

8. EQUIVARIANT FORMAL GROUPS OF PRODUCT TYPE

A simple class of A-efg’s can be constructed as follows. Let C be an ordinary, nonequivariant
formal group, and let B be a subgroup of A. We then have a formal multicurve C' := B* x C and
a homomorphism

¢:=(A* 2% B* % B« 0 = 0),
giving an A-efg. Equivariant formal groups of this kind are said to be of product type.

Proposition 8.1. An A-efg (C,¢) is of product type iff for every character a € A* with ¢(a) #0
in C (or equivalently, z(¢()) # 0 in Og), the element x($(x)) is invertible in Og. (This is easily
seen to be independent of the choice of coordinate.)

Proof. First suppose that for all @ with ¢(a) # 0, the element z(¢(a)) is invertible. The kernel
of ¢ is a subgroup of A*, so it necessarily has the form ann(B) for some B < A, so ¢ factors as
A* 1% B* % C for some ¥. By assumption, z(¢(8)) is invertible for all § € B* \ {0}.

Let C = {a € C | z(a) is nilpotent } be the formal neighbourhood of 0 in C, and define
o:B*xC = C by o(8,a) = ¥(8) + a. We need to show that ¢ is an isomorphism. For this, we
define z5(a) = z(a—4(B)) and y = [[ 5 5. 75 and R = Oc. From the definition of an equivariant
formal group, we know that R = R;\, and it is clear that

Opexe = HRQB-
B

It will thus suffice to show that the natural map

By =[] R,
B

is an isomorphism. This will follow from the Chinese Remainder Theorem if we can check that
the ideal (z5(a),z,(a)) contains 1 whenever § # ~. This is clear because modulo that ideal, we

have ¢(8) = a = (), so Y(B8 — ) = 0, so z(¢(8 — 7)) = 0, but z(4(8 — 7)) is invertible by
assumption. Thus, C is of product type, as claimed.

Conversely, suppose that C is of product type. The vanishing locus of z is contained in {0} x 6’,
so z must be invertible on (B* \ {0}) x C. It follows immediately that when ¢(a) # 0 we have
¢(a) € (B*\ {0}) x C and so z(¢4(a)) is invertible, as required. O

Corollary 8.2. Fvery A-equivariant formal group over a field is of product type.

Proof. This is immediate from the proposition. |

We next show how groups of product type occur in topology. For this we need to use the

geometric fixed point functors 53: Sa = S for B < A. The definition and properties of these
functors will be recalled in Section 10.

Theorem 8.3. Let K be a nonequivariant even periodic cohomology theory, with associated formal
group C over S, and let B be a subgroup of A. Define a cohomology theory K* on Sy by K*X =

~ —B ~
K*¢ X. Then K is evenly periodic, and the associated equivariant formal group is just B* x C
over S.
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Proof. Note that ¢SV = SV” for any virtual complex representation V, and that ¢~ £°X =
Y>°X#B for any baseq A—spAa,ce X. It follows that m K = m K = 0 and that the periodicity
isomorphism F(S?", K) = K gives an isomorphism

KX, ASY)=K*(XPASY) = R*XP = K*X,
of modules over K*X_ . This implies that K is evenly periodic, with K°(point) = K°(point) and
thus spec(K?(point)) is the base scheme S for C. We also have

K°PU = K°(PU)P = K*(B* x CP®) = Op. &,

so the equivariant formal group associated to K is just B* x C as claimed. |

Example 8.4. Let K=K (p,m) be the two-periodic version of Morava K-theory at a prime p,
with height n. We define an equivariant theory K = K (p,n, B) as above; this is called equivariant
Morava K -theory. In [17] we present evidence that these theories deserve this name, because
they play the expected réle in equivariant analogues of the Hopkins-Devinatz-Smith nilpotence
theorems, among other things. The same paper also explains the representing object for the theory
K, and shows that we have natural isomorphisms as follows:

K (X AY) = K, (X) ®k. K.(Y)
K*X = Homg, (K. X, K.,).

9. EQUIVARIANT FORMAL GROUPS OVER RATIONAL RINGS

We next prove the equivariant analogue of the well-known fact that all formal groups over a
Q-algebra are additive. We write @a for the ordinary additive formal group over S. If we consider
formal schemes over S as functors in the usual way, this sends an Og-algebra R to the set Nil(R)
of nilpotents in R. Given a free module L of rank one over Og (or equivalently, a trivialisable
line bundle over S), we can instead consider the functor R — L ® o, Nil(R), which we denote by
L®@,. This gives a formal group over S, noncanonically isomorphic to G.. If C is a formal
multicurve group over S, then the cotangent spaces to the fibres give a trivialisable line bundle
wc on S. This is easily seen to be the same as wgs, where C is the formal neighbourhood of zero,
as usual. From now on we just write w for this module. If S lies over spec(Q) then the theory of
logarithms for ordinary formal groups gives a canonical isomorphism Cowlw® @a.

Theorem 9.1. Let (C,¢) be an A-equivariant formal group over a scheme S, such that the
integer n = |A| is invertible in Os. Then there is a canonical decomposition S =[5, SB, and
a corresponding decomposition -

C':HSB X56XB*,

where C is the formal neigbourhood of 0 in C. Moreover, if Og is a Q-algebra than C ~ wal ®@a
and so

C:HSB xs(w51®@a) x B*.

Proof. Put n = |A|, and choose a coordinate z on C. For formal reasons we have z(a + b) =
z(a) + 2(b) (mod z(a)z(b)) as functions on C?, and it follows that z(na) = f(a)z(a) for some
function f on C with f(0) = n. Let C[n] denote the closed subscheme of points of order n in
C, s0 C[n] = {a € C | f(a)x(a) = 0} = spf(Oc/(f.z)). Note that S is embedded as the zero
section in C' with Og = O¢/z, so in Og we have f = f(0) =n € Og 2 Q, so f is invertible mod
z, s0 1 € (f) + (z). By the Chinese remainder theorem, the scheme C[n] splits as S II T', where
T = spf(O¢/f). Note that z is zero on S and invertible on T'.

Now consider the map ¢ from A* to the group of sections of C[n] over S. Suppose that for
each a € A* we either have ¢(a)(S) C T (and so z(¢(a)) is invertible) or ¢(a)(S) C S (so
z(¢(a)) = 0)); it then follows immediately from Proposition 8.1 that C' is of product type. In
general, however, it is not true that ¢(a)(S) C T or ¢(a)(S) C S; instead, we can just pull back
the splitting C[n] = S II T along the map ¢(a): S — C to get a splitting S = S, II T, with
#(@)(Sa) C S and ¢(a)(Ty) CT. Next, for U C A* we put

My= () SN [) Ta

acU agU
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It is clear that S = [[,, My, and that My = @ unless U is a subgroup of A*. Thus, if we put
SB = Mann(B), we have a splitting S = [[ 5 S, and a corresponding splitting C' = [z Cs, where
Cp is an A-efg over Sg. It is now easy to see that Cp = Sp xg C x B* as required. The rational
statement now follows from the nonequivariant theory. |

Remark 9.2. Nonequivariantly, one knows that rational spectra are determined by their homo-
topy groups. This gives a classification of rational even periodic cohomology theories, as follows.
Let £ denote the category of pairs (S, L), where S is an affine scheme over Q and L is a trivialisable
line bundle over S. The morphisms from (Sg, Lo) to (S1,L1) are pairs (f,g) where f: So — S;
and g is an isomorphism Lo — f*L; of line bundles over Sp. Let &' be the category of pairs (.5, 5),
where S is as before and C is a (nonequivariant) formal group over S, with morphisms defined
in the analogous way. Let £ be the category of even periodic rational ring spectra. Then there
is a contravariant equivalence £ — &' sending E to (spec(E°),spf(E°CP*)), and a covariant
equivalence &' — &£ sending (S, 6') to (S,wg), so the composite sends E to (spec(E°), E~2). If E
maps to (S, L) then E™X =[] H™?"(X;L").

Now let QS4 denote the category of rational A-spectra. One knows that the functors EB : 84—
Sop induce an equivalence QSa — [[g<4 QSo. (Note here that because A is abelian, there are no
nontrivial Weyl groups or conjugacies between subgroups; we have used this to simplify the usual
statement.) In particular, any evenly periodic rational equivariant cohomology theory E* has the
form

E"X = [[ERé X = [[E™*"(6" X;wp)
B B,n
for some family { E};} p<a of nonequivariant even periodic rational theories, with associated formal
groups Cp and line bundles wg over Sg = spec(E%). By taking X =1 and then X = PU we find
that S := spec(E°) = [[5 Sp and

C :=spf(E°PU) = [[ B* x Cs = [[ S5 x (w5' ® G,) x B*.
B
B

In other words, the topological picture is perfectly parallel to the algebraic one.
The following slight extension can easily be proved in the same way.

Corollary 9.3. Let (C,¢) be an A-equivariant formal group over a scheme S, such that Og is an
algebra over Z . There is of course a unique splitting A = Ag x Ay, where Ag is a p-group and p
does not divide |A1|. Let Co C C be the formal neighbourhood of [¢(A§)], and let ¢o: Ay — Co be
the restriction of ¢. Then there is a canonical decomposition S = [[ 5 4, 9B, and a corresponding
decomposition

C~ HSB xg Co x B*,
such that over Sp, the map ¢ is the product of ¢g and the restriction map A} — B*. a

10. EQUIVARIANT FORMAL GROUPS OF PUSHOUT TYPE
We next consider a slightly different generalization of the notion of a group of product type.

Definition 10.1. Suppose we have a subgroup B < A and a formal multicurve group C', with a
map ¢': (A/B)* — C' making it an A/B-equivariant formal group. There is an evident embedding
(A/B)* — A*, which we can use to form a pushout

(4/B)* —2 ¢

A — C.

¢
If we choose a transversal T' to (A/B)* in A*, then the underlying scheme of C' is just [ ., C.
This implies that the formation of the pushout is compatible with base change, and that C is an
A-equivariant formal group. Formal groups constructed in this way are said to be of pushout type.
(The case where ¢' = 0 evidently gives groups of product type.)
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We next examine how formal groups of this kind can arise in equivariant topology. For this, we
need to recall the various different change of group functors and fixed-point functors for A-spectra.

Given a homomorphism (: B — A, there is a pullback functor (*: S4 — Sp, which preserves
smash products and function spectra. (Note that if ¢ is not injective, then (*U/4 is not a complete
B-universe, so the definition of (* contains an implicit change of universe.) If ¢ is the inclusion of
a subgroup then ¢* is called restriction and written ress. This functor has a left adjoint written
X = AAp X, and a right adjoint written X — Fg(A,,X). These two adjoints are actually
isomorphic, by the generalized Wirthmiiller isomorphism [11, Theorem I1.6.2].

If ¢ is the projection A — A/B then (* is called éinflation. This has a right adjoint functor
MBSy = Sy /B, which we call the Lewis-May fixed point functor. The adjunction is discussed
in [11, Section IL.7]; there A2 X is written XP. One can check that the following square commutes

up to natural isomorphism:
AC
Sa —— Sayc

A/C
Tesy FESB/C

S )\—c) B/C-
It will be convenient to write

XB :resgl/B)\B = )\Bresg: Sa— 8.

The usual equivariant homotopy groups of X are defined by 72X = A" X. The functors AB

and X° do not preserve smash products, and there is no sense in which AZ acts as the identity on
B-fixed objects.

Lewis and May also introduce another functor ¢ : Sq — Sy /B called the geometric fized point
functor. To explain the definition, let V' be a complex representation of A. We write xy for the
usual inclusion S® — SV, which can be regarded as an element of the R(A)-graded homotopy
ring 7,S° in dimension —V. Tt is easily seen to be zero if V4 # 0, but it turns out to be nonzero
otherwise. It is also clear that xyew = xXvXxw-

By dualizing the standard cofibration S(V); — S° X% SV we see that D(S(V), ) deserves to
be called S°/xy. On the other hand, we have

SOy =lm(S0 5 8V 25 87V ) = 5%V,

It follows that for any X € Sy, the spectrum X [X‘_,l] = X A SV is a Bousfield localization of X,
or more specifically, the finite localization away from the thick ideal generated by S°/xyv. There
is another characterization as follows. Let F be the family of those subgroups A’ < A such that
VA" #0, and let C be the thick ideal generated by {A/A! | A" € F}. It is not hard to see that
(8%°V)4 is contractible for A’ € F, and equivalent to S for A’ ¢ F. It is well-known that up to
homotopy there is a unique space with these properties, denoted by EF , and that X A ETF is the
finite localization of X away from C. It follows that C is the same as the thick ideal generated by

SO/XV-
Now fix a subgroup B < A, and take

V=Vap:=CAlo (A" )= P L
a€A*\ann(B)

In this context, we write x4, for xy, and we also write x4 for x4,4. We also put F[B] = {C <
A| B £ C}, and note that EF[B] = S>V. The geometric fixed-point functor ¢¥: S4 — Sa/p is
defined by

¢PX = XB(X[x3'p]) = \B(X A EF[B]).

(In [11] the functor ¢® is actually defined in a different way, but the above description is proved
as Theorem I1.9.8). Let 7: A — A/B be the projection. One can check that ¢ preserves smash
products [11, Proposition 9.12], the composite

Sa/B LAY Sa/B
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is the identity [11, Proposition 9.10], and the following diagram commutes:

#C
Sa —— Sayc

a/c
ress res B; pe

Sg T SB/C-

Moreover, for any A-space X we have ¢ZX>°X = ¥ X B [11, Corollary 9.9]. It will be convenient
to write B 4B 5 5

¢ =resy’' @7 = ¢ resg: Sa4 = So-
This again preserves smash products, and it is known that a spectrum X € S4 satisfies X = 0 iff
EBX =0in &y for all B < A. We will also need the following property:
Lemma 10.2. Suppose that B < A, and write x = xa,B. Then for X,Y € Sa there are natural

equivalences
NRX Y = MW FX I L YIx ) = F(67 X, ¢"Y).
Proof. First note that the map W — W[x~!] is an equivalence iff W is concentrated over B as
defined in [11, page 109]. Let C be the category of such W, so we have functors ¢& = AB: C — S, /B
and ¢: Sq/p — C given by ¢(Z) = (7*Z)[x ']. We see from [11, Corollary IL.9.6] that ¢* and ¢
are mutually inverse equivalences, and it follows that
X YRTP = XL Y2 = 67X, 6Py,
Now consider W € S4,p and replace X by (7*W) A X in the above. We deduce that
W APFX, YD = W AP R, Y DEY? = W, F(6P X, 6P )1 ™.
The claim now follows by the Yoneda lemma. O

Theorem 10.3. Let E' be an A/B-equivariant periodically orientable ring spectrum, with as-
sociated equivariant formal group (A/B)* — C'. Let w: A — A/B be the projection, and put
E = (n*E")[x']- Then E is an A-equivariant periodically orientable ring spectrum, and for all
X € 84 we have

E.X =E'¢PX

E*X = (E")*¢®X.
Moreover, the formal group associated to E is the pushout of C' along the inclusion (A/B)* — A*.
Proof. Because 7* preserves smash products, it is clear that 7* E' is a commutative A-equivariant

ring spectrum, and so the same is true of E. We saw earlier that ¢B7* = 1, s0 ¢PE = E'. Also,
we have EA X = EA X[x '], so

AN(EAX)=¢P(ENX) = ¢"(B) A g7 (X) = E' A pP(X).
We can apply A/® to this to see that M (E A X) = M/B(E' A P (X)), and by applying 7, we
deduce that E, X = E/¢PX.

For the corresponding statement in cohomology, we see using Lemma 10.2 that ABF(X, E) =
F(¢BX,¢PE) = F(¢PX,E'). We again apply the functor m,A\*/B (=) to see that E*X =
E"¢P X, as claimed.

In particular, if X is an A-space we have ¢PL®X = ¥*°XP and so E*X = E""XP. Thus,
if we put S = spec(E'®(point)), then S is also the same as spec(E°(point)). We next consider
the space PV, where V is a representation of A. We can split V' into isotypical parts for the
action of B, say V' = €4 V[B], where V[f] is a sum of representations L, with a|p = 8. We then
have (PV)? =[5 PV[f], and so E*PV = []; E'""PV[3]. Using this, it is easy to see that E
is periodically orientable. Next, consider the space Plda, so (PUA)E =] 5 PUa[f]). The space
P(UA[0]) is canonically identified with Pl4,p, so spf(E’ O PUU4[0]) = C". For 8 # 0, we can choose
§ € A* extending 3, and then tensoring with L_ 5 gives an equivalence 6: PUA[B] ~ PUa/p. If we
change f by an element y € (4/B)*, then 6 changes by the automorphism T_ of PUy/p. Using
this, it is not hard to identify the curve C = spf(E°PU,) = [[ spf(E'° PU4[B]) with the pushout
of C' along the map (A/B)* — A*. O
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11. EQUIVARIANT MORAVA E-THEORY

Let 50 be the standard p-typical formal group of height n over Sy = spec(F,). We write K for
the two-periodic Morava K-theory spectrum whose associated formal group is 6‘0, so K, = F, [ut]
with |u| = 2. This formal group has a universal deformation C, over Sy := spf (Zplua, - - yun—1]).
We write £ for the corresponding Landweber-exact cohomology theory, and refer to it as Morava
E-theory. Now suppose we have a finite abelian group A and a subgroup B. We define Cy =
B* x 6’0, which is an A-efg of product type over Sy, associated to the equivariant Morava K-theory
K*X =K *EBX . We can also define an A/B-equivariant cohomology theory by X — E*X h(A/B)>
as in Section 6. The associated equivariant formal group is Cr=C xg, S over S, where S =

Hom((A/B)*,C}). We then perform the construction in Section 10. This gives an A-equivariant
theory E = E(p,n, B), defined by

E*X = E*(6° X)ncam)),

whose associated equivariant formal group is the pushout of C5 along the inclusion (4/B)* — A*.
We write C' for this pushout, and we refer to E as equivariant Morava E-theory. In [17] we
give some evidence that this name is reasonable, related to the theory of Bousfield classes and
nilpotence. Here we give a further piece of evidence, based on formal group theory.

We first note that Sg is a closed subscheme of Sy, which is in turn a closed subscheme of
S = Hom((A/B)*,C1) (corresponding to the zero homomorphism). The restriction of C to Sy is
just B* x 61, and the restriction of this to Sy is just Cy. The inclusion Cy — C' corresponds to
a ring map Oc — Og¢,, or equivalently E°CPU — K°PU. Tt can be shown that this comes from
a natural map E*X — K*X of cohomology theories. Indeed, there is certainly a nonequivariant
map q: E — K. Moreover, up to homotopy there is a unique map A/B — E(A/B) of A/B-spaces,
which gives a natural map

res(Y) = (A/B+ AY)/(A/B) = (E(A/B)+ ANY)/(A/B) = Yn(a/B)
for A/B-spectra Y. If Y = ¢P X then res(Y) = EBX and so we get a map
E*X = B*(6°X)pasm) = B°¢° L5 K" X = K*X,
as required.

Definition 11.1. A deformation of the A-efg Cy over Sy consists of an A-efg C' over a base S’
together with a commutative square

COLCI

|

SOT’SI

such that
(a) f is a closed inclusion, and S’ is a formal neighbourhood of f(.So)
(b) f induces an isomorphism Cy — f*C of A-efg’s over Sp.

If C' and C" are deformations, a morphism between them means a commutative square

Cl 9 N CII

|

SI 7 N SII

such that g induces an isomorphism C' — ¢g*C" of A-efg’s over S'. A wuniversal deformation
means a terminal object in the category of deformations.

As mentioned previously, the formal group C associated to E is the universal deformation of
the formal group Cy associated to K. Equivariantly, we have the following analogue.

Theorem 11.2. The A-equivariant formal group C (associated to equivariant Morava E-theory)
is the universal deformation of Co (associated to equivariant Morava K -theory).
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Proof. Suppose we have an A-efg (C', ¢') over S’ equipped with maps (f, f) making it a deforma-
tion of Cy. We will identify S with f(Sp) and thus regard it as a closed subscheme of S’. Similarly,
we regard Cj as the closed subscheme C'|g, of C'. Note that S’ is a formal neighbourhood of Sy,
and it follows that C' is a formal neighbourhood of Cy. We choose a coordinate ' on C', and
note that it restricts to give a coordinate on Cj.

Now let C' denote the formal neighbourhood of the zero section in C'. We have (C")|s, = Co,
so we can regard C' as a deformation of the ordinary formal group Co. As C} is the universal
deformation of Cy, this gives us a pullback square

~ g ~
o > O

|

SI T) Sl.

Next, suppose we have a € (A/B)* C A*, giving a section ¢'(a) of C' and an element z'(¢' (a)) €

Osr. As C'ls, = Co = B* x Cp and a|p = 0 we have ¢'(a)|s, = 0, so #'(¢/(a)) maps to 0 in O, .

As S' is a formal neighbourhood of Sy, it follows that z'(¢'(«)) is topologically nilpotent in Og:,

and thus that ¢'(a) is actually a section of C'. Thus, §o ¢' gives a map (A/B)* — C1, which is

classified by a map h: S’ — Hom((A/B)*, 61) = S. The maps § and h combine to give a map
il: 5' — h*@ = h*(@l L H S) = g*CA'l.

This can be regarded as an isomorphism of A/B-equivariant formal groups.

Next, the decomposition Cy = B* x 6’0 = HBG B 50 gives orthogonal idempotents eg € Oc¢,
with Eﬁ eg = 1. As C' is a formal neighbourhood of Cp, these can be lifted to orthogonal
idempotents in Ocr, giving a decomposition C' = [[ 5 C; say. One can check that Cy = ¢'(a) + C'
for any o € A* with a|p = 3, and it follows that C" is just the pushout of the map ¢': (A/B)* — c
and the inclusion (4/B)* — A*. Tt follows in turn that h extends to give an isomorphism
C' = ¢*C, and thus a morphism C' — C of deformations. All steps in this construction are

forced, so one can check that this morphism is unique. This means that C' is the universal
deformation of Cy, as claimed. a

12. A COMPLETION THEOREM

Suppose we have an A-equivariant formal group (C,¢), and a subgroup B < A, giving a
subgroup (A/B)* < A*. Let Sy be the closed subscheme of S where ¢((A/B)*) = 0. Equivalently,
if we put e = z(¢(—a)) and J = (en | @ € (A/B)*), then Sy = V(J) = spec(Os/J). If we put
Co = Sy xXg C then ¢ induces a map ¢: B* x Sy — Cp making Cj into a B-equivariant formal
group over Sg. Next, we put S; = h_r)n spec(Og/J™) = spf((Os)%), the formal neighbourhood of
Siin S, and C; = S; xg C. This is an A-equivariant formal group over S; for which ¢((A4/B)*)
is infinitesimally close to 0.

Now suppose that C' comes from an A-equivariant periodically orientable theory E. We would
like to interpret Cy and C; topologically.

Proposition 12.1. Let Fy be the B-spectrum resy (E), representing the theory E*(AxpY’) for B-
spaces Y. Let C} /S| be the associated B-equivariant formal group. Then there is a map S§ — So
(which may or may not be an isomorphism) and an isomorphism C} = Co X g, S§.

Proof. We have S§ = spec(mgEg) = spec(E°A/B), so there is a natural map S} — S. Moreover,
we have PUp ~ resﬁ PU 4, which gives an isomorphism A xp PUp ~ A/B x PU4 and thus

ESPUgp ~ E°(A/B x PU,) = E°(A/B) ®go E°PU,.

This shows that the formal group for Ej is just Cj := C' xg Sj. All that is left is to check that the
map S — S factors through Sp, so C{ can also be described as Cy x g, Sj. To see this, note that
¢ comes from the inclusion j: A* = 7{' PU — PU, so the corresponding map ¢ over S}y comes
from the map 1 x j: (A/B) x A* - (A/B) x PU. Using the isomorphism

[(A/B) x A*,(A/B) x PU* = [A*,(A/B) x PUI®
= Map(A*, 7y ((A/B) x PU))
= Map(4*, (4/B) x B¥)
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we see that the restriction of (1 x j) to (A/B) x (A/B)* is null, so that ¢3((A/B)*) = 0 as
claimed. O

If E is the complex K-theory spectrum KUy, then we saw earlier that S = Hom(A*,G,,) and

SO

So = {¢ € Hom(A*,Gy,) | ¢((A/B)*) = 0} = Hom(B*, Gy, ).
On the other hand, it is well-known that KU4(A xpY) = KUEY so Eg = KUp so S =
Hom(B*,G,,) = Sp- A similar argument works for theories of the form E*X = E*Xp,4 where E
is K (n)-local as in Section 6, in which case we have S = Hom(A*,C) and Sp = Sy = Hom(B*, 0).
At the other extreme, for theories of the form E*X = E*(res{j‘ (X)), we have S = S and S} =
(A/B) x S.

We next consider C;. Recall that there is an A-space E[< B] characterised by the property
that E[< B]Y is contractible for C' < B and empty for C' £ B. The first approximation would be
to consider the ring spectrum F(E[< B]4, E). However, as S; is a formal scheme rather than an
affine scheme, we need a pro-spectrum rather than a spectrum. The solution is to define Fy (X, E)
to be the pro-system of ring spectra F(X,4,E), where X, runs over finite subcomplexes of X,
and to put By = F(E[< B]+,E). The desired description of EfPU is a kind of completion
theorem in the style of Atiyah-Segal, so we expect to need finiteness hypotheses. However, with
these hypotheses, we have an exact result rather than an approximate one as in the previous
proposition.

Theorem 12.2. Suppose that E*(point) is a Noetherian ring, and that E*(A/C) is finitely gen-
erated over it for all C < A. Then the A-equivariant formal group associated to Ey is C1.

Proof. This is essentially taken from [7]. Choose generators o, ...,a, for (4/B)*, let L; be the
one-dimensional representation corresponding to «; and let x; denote the inclusion S° — STi.
There is a canonical Thom class u; in E°STi) and x?(u;) is the Euler class e; = #(¢(—a;)). One
checks easily that the space P := [], S(coL;) is a model for E[< B], and the spaces T'(m) :=
[1; S(mL;) form a cofinal system of finite subcomplexes, so E is equivalent to the tower of ring
spectra F'(T(m)4+,E) = D(T(m)4+) A E. Next, by taking the Spanier-Whitehead dual of the

cofibration S(mL;)y — SO X §™mLi we see that D(S(mL;),) deserves to be called S/x™, and
so D(T'(m)4) deserves to be called S/(xT*, ..., x™). This suggests that m,(E A D(T(m)y)) should
be E./Jm, where Jp,, = (uf*,...,u") < E,. Unfortunately, there are correction terms. More
precisely, the cofibration displayed above gives a two-stage filtration of D(S(mL;)4) for each 1,
and by smashing these together we get a (r + 1)-stage filtration of D(T'(m)4), and thus a spectral
sequence converging to m.(E A D(T(m)4)). The first page is easily seen to be the Koszul complex
for the sequence e],...,e™, so the bottom line of the second page is E./Jpn, and the remaining
lines are higher Koszul homology groups. The filtrations are compatible as m varies, so we get a
spectral sequence in the abelian category of pro-groups converging to 7, E;. In the second page,
the bottom line is the tower {E./Jm}m>0, and the remaining lines are pro-trivial by [7, Lemma
3.7]. It follows that m E; ~ {E./Jn} as pro-groups, and so the formal scheme corresponding to
moEy is lim spec(E°/J,,) = lim spec(E®/J™) = S;. We now replace E by F(P(n.C[A])4,E)

and then take the limit as n tends to infinity to conclude that spf(EYPU) = C x5 S1 = C; as
claimed. 0

Remark 12.3. Using the same circle of ideas one proves that the kernel of the map E°/J —
E°(A/B) is nilpotent, so the map S — Sy is dominant; compare [7, Theorem 1.4].

13. A COUNTEREXAMPLE

Here we exhibit a Z /2-equivariant formal group C with a number of unusual properties, which
are only possible because the base scheme S is not Noetherian. The phenomena described here
are the main obstruction to our understanding of the equivariant Lazard ring.

For any A-equivariant formal group (C, ¢), there is a natural map ¢: A* x C — C given by
Y(a,a) = ¢(a) + a. As C is a formal neighbourhood of [¢(A*)], it is natural to expect that
should be an epimorphism, or equivalently that the map ¢*: Oc — ], Og should be injective.
The key feature of the example to be constructed here is that ¢* is not in fact injective.

Start with kg = Fy[e], let M be the module F, [e*!]/F,[e], and let k be the square-zero extension
ko ® M. More explicitly, k is generated over ko by elements u1, us, . .. subject to eu;41 = u; (with
ug interpreted as 0) and w;u; = 0. Put S = spec(k).
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Next, let R be the completion of k[z] at the element y = x? + ez, so R = k[y]{1,z}, and put
C =spf(R) = {z € Ay | 2° + ex is nilpotent }.
This is a subgroup of A} under addition. In the corresponding Hopf algebra structure on R, the
elements z and y are both primitive. There is a homomorphism ¢: Z /2 — C sending 0 to 0 and
1 to e. The corresponding divisor is just R/y, and as R is complete at y, we deduce that (C, ¢) is

an equivariant formal group.
Next, we can define maps Ag, A, : R — k[t] by

Xo(z) =t
Ao(T) =t+e
Xo(y) = Aaly) = t* + te.
The map ¢*: Oc = [], Op is just the map (Ao, A): R — k[t] x k[t]. Now consider the element

f= Zu1_2k+1y2k € R.

k>0
We then have
o(f) = Z“lﬂ'ﬂr1 (£ + et)®”

k>0

kt1 k ok
= E u1,2k+1t2 + E u1,2k+1e2 t2
£>0 k>0

k+1 k
= E U1,2k+1t2 + E U1,2kt2

k>0 k>0
20
= U1_20t = Uot =0.

We also have \,(f) = 0 by the same argument, so ¥*(f) = 0.

14. DIVISORS

We now return to the purely algebraic theory of formal multicurves and their divisors.

Recall that a divisor on C'is a regular hypersurface D C C such that Op is a finitely generated
projective module over Og, which is discrete in the quotient topology. We also make the following
temporary definition; one of our main tasks in this section is to show (in Proposition 14.15) that it
is equivalent to the preceeding one. (For divisors of degree one, this follows from Corollary 2.10.)

Definition 14.1. A weak divisor on C is a closed subscheme D C C that is finite and very flat
over S (so Op is a discrete finitely generated projective module over Og). Thus, a weak divisor
D = spf(R/J) is a divisor iff the ideal J is open and generated by a regular element. If y is a
good parameter on C, we note that .J is open iff y € J for N > 0.

If Dy = spf(R/Jo) is a divisor and Dy = spf(R/Jy) is a weak divisor then one checks that the
scheme Dy + D, :=spf(R/(JoJ1)) is again a weak divisor.

Definition 14.2. Now suppose we have a map ¢: T — S of schemes which is finite and very
flat, so that Or is a discrete finitely generated projective module over Og. If g € O then
multiplication by g gives an Og-linear endomorphism pg of Or, whose determinant we denote by
Nq(g) or Nz/s(g)-

Definition 14.3. Fix a difference function d on C. For any weak divisor D on C' over, we can
regard d by restriction as a function on D xg C'. We also have a projection q: D xg C' — C, and
we put
fp=Ny(d) = Npxsc)/c(d) € Oc.
We will eventually show that D = spf(O¢/fD).

Remark 14.4. Consider the case where C is an ordinary formal group, with coordinate z and
associated formal group law F. We then have O¢c = Og[z] and Ocxc = Og|zo,z1], and d =
x1 —p To. If D has the form ), [u;] for some family of sections u;, then we have elements a; =
z(u;) € Os and we will see that fp = [[,(x —F a;). This is a unit multiple of the Chern
polynomial gp = [[;(z — a;), and it is familiar that D = spf(O¢/gp), so D = spf(O¢/ fp) also.
In the multicurve case, one can still define gp (as the norm of the function (a,b) — x(b) — z(a))
and we find that it is divisible by fp, but gp/fp need not be invertible so O¢/gp # Op.
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Lemma 14.5. Let R be a ring, P a finitely generated projective R-module, and o an automorphism
of P. Then « is injective iff det(a) is a regular element.

Proof. After localising we may assume that P = R? for some d, and « is represented by a d x d
matrix A. If det(A) is regular, the equation adj(A)A = det(A)I; implies immediately that « is
injective. Conversely, suppose that « is injective. As P is flat, it follows that a®?: P®? — P®d ig
also injective. It is easy to check with bases that AP is naturally isomorphic to the image of the
antisymmetrisation map P®? — P®¢, In particular, it embeds naturally in P®?, and it therefore
follows that A%a is injective. On the other hand, A?P is an invertible R-module, so End(A\¢P) = R,
and A¥(a) = det(a) under this isomorphism. It follows that det(a) is regular as claimed. O

Corollary 14.6. For any weak divisor D on C, the element fp € O¢ is regular.

Proof. Take R = O¢ and P = Opxc and a = p4. We know from Lemma 2.9 that « is injective,
and the claim follows. O

Lemma 14.7. Let q: T — S be finite and very flat, and let g be a function on T. If there is a
section u: S — T such that g o u =0 then Ny(g) = 0.

Proof. Put J = ker(u*: Or — Og), so g € J. We have a short exact sequence of Os modules

J = Or N Ogs, which is split by the map ¢*: Og — O7. The sequence is preserved by puy,
and ps(Or) = Or.f < J so the induced map on the cokernel is zero. Zariski-locally on S we
can choose bases adapted to the short exact sequence and it follows easily that det(us) = 0 as
claimed. 0

Corollary 14.8. The function fp € O¢ vanishes on D.

Proof. We have fp|p = Ny (d), where ¢': D xg D — D is the projection on the second factor.
The diagonal map §: D — D xg D is a section of ¢’ with dod =0, so Ny (d) =0. a

Lemma 14.9. If D = Dy + D; (where Dy, Dy are divisors) and g € Op then
Nps(9) = Np,ys(9)Np,/s5(9)-

Proof. Put R = O¢, and let the ideals corresponding to D; be J; = (f;) for i« = 0,1. We then
have a short exact sequence of Op-modules as follows:

Op, = R/fo =% Op = R/(fof1) = Ob, = R/ fi.

This is splittable, because Op, is projective over Og. The map pu, preserves the sequence, and it

follows easily that det(u,) = det(uy|Op,) det(py|Op, ), as required. O
Corollary 14.10. If D = Do + D; as above then fp = fp,fp, -
Proof. Just change base to C' and take g = d. a

Lemma 14.11. Suppose that D is a weak divisor of degree r, that D' is a divisor of degree r',
and that D' C D. Then D = D' + D" for some weak divisor D" of degree r — r'.

Proof. Put J = Ip and J' = Ip:. As D' is a genuine divisor, we have J' = Rf' for some regular
element f' € R. As D' C D, we have J < J'. Put J" ={g€ R| f'g € J} > J. We then have a
short exact sequence

R/J" 215 R/J - R/
As R/J and R/J' are projective modules of ranks r and r' over k, it follows that R/J" is a
projective module of rank r — /. Thus, the scheme D" := spf(R/J") is a weak divisor. From the
definition of J" we have J'J" < J. Conversely, if h € J then certainly h € J' = Rf' so h = gf'
for some g € R. From the definitions we have g € J", so h € J"J'. This shows that J = J'J"
and so D= D'+ D". d

Definition 14.12. Let D be a weak divisor of constant degree r. A full set of points for D is a
list uy,...,u, of sections of S such that D = " [u;]. If there exists a full set of points, it is clear
that D is actually a genuine divisor. (This concept is due to Drinfeld, and is explained and used
extensively in [9].)

Proposition 14.13. If u,...,u, is a full set of points for D, then Np,s(g) = []; g(wi) for any
function g on D. Moreover, we have fp(a) =[], d(a,u;), and so Op = Oc/ fp.
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Proof. As the projection [u;] — S is an isomorphism, we see that Nj,j/s(9) = g(u;). The
first claim follows easily using from Lemma 14.9 by induction on r. It follows similarly from
Corollary 14.10 that fp(a) = [[; d(a,u;). As d is a difference function we have O, = Oc¢/d(a, u;)
and so Op = O¢/ fp as claimed. O

Lemma 14.14. Let D be a weak divisor of constant degree r. Then there is a finite, very flat
scheme T over S such that the weak divisor T xs D on T xg C has a full set of points (and so is
genuine).

Proof. By an evident induction, it suffices to show that after very flat base change we can split D
as [u] + D" for some section u and some weak divisor D". It is enough to find a section u: S — D,
for then [u] C D and we can apply the previous lemma. For this we can simply pull back along the
projection map D — S (which is very flat by assumption) and then the diagonal map D — D xgD
gives the required “tautological” section. |

Proposition 14.15. Every weak divisor is a genuine divisor.

Proof. Let D = spf(R/J) be a weak divisor. We may assume without loss that it has constant
degree r. We know from Corollary 14.6 and Corollary 14.8 that fp is regular in R and lies in J;
we need only show that it generates J. It is enough to do this after faithfully flat base change, so
by Lemma 14.14 we may assume that we have a full set of points. Proposition 14.13 completes
the proof. a

15. EMBEDDINGS

Let C be a nonempty formal multicurve over a scheme S. In this section we study embeddings
of S in the affine line Ay = A' x S. If ¢ is the given map C — S, then any map C' — A} of
schemes over S has the form (x,q) for some z: C' — Al, or equivalently z € O¢.

Now choose a difference function d on C. Given z € O¢, we can define z': C x5 C — Al by
z'(a,b) = z(b) — z(a). Equivalently, ' is the element 1® z — 2z ® 1 in Ocxsc = Oc®osOc.
It is clear that z' vanishes on the diagonal, and thus is divisible by d, say ' = 6(z)d for some
0(z) € Ocxsc- This element 6(x) is unique, because d is not a zero-divisor.

Proposition 15.1. Let C % S be a nonempty formal multicurve. A map (z,q9): C = A}
is injective if and only if 0(x) is invertible. If so, then (x,q) induces an isomorphism C —
lim V(f¥) C AL for some monic polynomial f € Og[t], showing that C is embeddable.

—k

Proof. Put X = {(a,b) € C xgC | z(a) = z(b)} = V(z') = V(0(z)d). We see that z is injective if
and only if V(z') = A = V(d), if and only if d = uz’ = ub(z)d for some u € Ocx,c- As d is not
a zero divisor, this holds if and only if §(z) is invertible.

If so, we may assume without loss that d = z’. Choose a good parameter y, so O¢/y has
constant rank r over Og for some r. Put D = spec(R/y), let p: C xg D — C be the projection,
and put z = N,(2'). The proof of Proposition 14.15 shows that z is a unit multiple of y.

We next claim that {1,z,...,27"'} is a basis for R/y = R/z over k, and that z = f(z) for a
unique monic polynomial f of degree r. It is enough to check this after faithfully flat base change,
so we may assume that D = [ug]+...+[ur—1] for some list of sections u; of D. If we put a; = z(u;)

we see that 2 = [[;(z —a;). If we put e; = [];_;(z — a;) we also find that {eo,...,en—1} is a basis
for R/z. As e; = z* + lower terms , we also find that {1,...,2" !} is a basis as claimed.
The rest of the proposition follows easily from this. |

Now suppose we have an arbitrary element z € O¢. Given amap u: S’ — S we get a multicurve
C':= 8" xg C over S’ and a function 2’ = (C' = C 3 Al) € O¢r.

Lemma 15.2. There is a basic open subscheme U C S such that (z',q'): C' = Ay, is an embed-
ding if and only if u: S’ — S factors through U.

Proof. Choose a good parameter y on C' and put D = spec(Oc¢/y). Put w = Np, p,s(6(z)) €
Ogs. We see that w is invertible in Og if and only if 8(z) is invertible in Opx (p. As O¢ is complete
at y, we see that 8(x) is invertible in Ocx ¢ if and only if it is invertible in Opx,p. Given this,
it is clear that the scheme U = spec(Og[1/w]) has the stated property. O

Corollary 15.3. Let C be a formal multicurve over S. Then there is a faithfully flat map S’ — S
such that the pullback C' := S' x5 C is embeddable.
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Proof. Put R = O¢ and k = Og, and let y be a very good parameter on C. Let P be the
continuous dual of R, which is a projective module of countable rank over k. We have P&;R ~
Hom?s(R, R), so there is an element z € P&yR corresponding to the identity map 1r. The
scheme M := Mapg(C,Al) is the spectrum of the symmetric algebra k[P], with the tautological
map M xg C — Al corresponding to the element 2 € PQyR C k[P]@kR = Omxsc- As in the
lemma, there is a largest open subscheme S’ C M where this tautological map gives an embedding
S' xgC — AL, . Note that M = spec(k[P)) is flat over S and S’ is open in M, it is again flat over
S. Tt is clear by construction that S’ xg C has a canonical embedding in AL,. All that is left is
to check that the map u: S — S is faithfully flat. It will suffice to show that u is surjective on
geometric points, and this follows easily from Lemma 2.17. |

16. SYMMETRIC POWERS OF MULTICURVES

In this section, we study the formal schemes C"/%,, or in other words the symmetric powers
of C. As usual, we write R = O¢ and k = Og. We choose a good parameter y on C, and a basis
{eo,-..,en_1} for R/y. We then put en;4; = y'e;, which gives a topological basis {e; | i > 0} for
R over k and thus an isomorphism R =~ [], k of topological k-modules. We write

R, = R®},...3rR

S, = R>"

R =k[y]
Rr —R@k . @kR = k[yl;- .,yr]]

u; = 4’th elementary symmetric function of yq,...,y,

5, =R = k[, ..., ur]
C"=Cxg...x5C =spf(R,)
C" /%, = spf(Sy)
C = spf(R)
C" ' =0C xg...x5C =spf(R,)
C" /2, = spf(S,).
Here we have topologized R,., S, and S, as closed subrings of R,. We clearly have a commutative

square of topological rings as shown on the left below, and thus a commutative square of formal
schemes as shown on the right.

R, +—— S, cr— CT/E’I'

R, ——35, o —»T/s,
We next exhibit topological bases for the above rings. Put
A=N
A=mN"={a€A|a;=0 (modn) for all i}
B={BeN*|) gi=r}

i=0
B={B€B|B; =0wheneveri#0 (modn)}.
Next, for a € A we put
€a =€n, ®...Qey, €R,.

Note that enq = [[;—, ¥5* € Ry, and epata’ = €naear-
Now define 7: A = B by 7(a); = |{i | a; = j}|- This gives bijections A/%, = Band A/%, = B.

For 8 € B, we put
ep = Z ey € Sy.
m()=4
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It is clear that

{ea | @ € A} is a topological basis for R, over k, giving an isomorphism R, =[] 4 k.
{eq | @ € A} is a topological basis for R,.

{es | B € B} is a topological basis for S,.

{es | B € B} is a topological basis for S..

Of course, the monomials in the symmetric functions u; give another topological basis for S, over
k.

Proposition 16.1. If S’ = spec(k’) is any scheme over S, and C' = S’ xg C (considered as a
maulticurve over S') then (C')" /S, = 8" x5 (CT/%,). The schemes C, C' and C' /%, are also
compatible with base change in the same sense.

Proof. Put R' = Ocr = K'®R = [[;en ks and R, = Ocryr = R'®p ... 0w R' = [[4ea k', and
Sy = Owryryz, = llgepk'- This is clearly the same as k'®rSy, so (C")" /S, = (C"/%,) x5 S'.
The same argument works for the other claims. O

We next need to formulate and prove various compatibility statements for the topologies on the
rings considered above.

Definition 16.2. Let A be a linearly topologised ring, and let M be a topological module over A.
We say that M is topologically free of rank r if it is isomorphic to A" (with the product topology)
as a topological module.

Definition 16.3. Let A be a linearly topologised ring, and let B be a closed subring (with the
subspace topology). We write I <o A to indicate that I is an open ideal in A. We say that B is
neat if for every open ideal J <o B, the ideal JA is open in A.

Remark 16.4. As B has the subspace topology, we see that {IN B | I <o A} is a basis of open
ideals in B. It follows that B is neat iff (INB)A is open in A whenever I <o A. If so, then (using
the inclusion (I N B)A < I) we see that {(INB)A | I <o A} is a basis of open ideals in A.

Remark 16.5. Suppose that we start with a linear topology on B. We can then give A a linear
topology by declaring {AJ | J <o B} to be a basis of open ideals in A. By regarding B as a
subspace of A, we obtain a new linear topology on B, which may or may not be the same as the old
one. Now suppose that A is faithfully flat over B. It follows that A/JA = A®p B/J is faithfully
flat over B/J, and in particular that the map B/J — A/JA is injective, so J = (JA) N B. Using
this we see that the two topologies on B are the same, and that B is neat in A.

In particular, if A is topologically free of finite rank over B, then B is neat in A. Conversely,
if A is free of finite rank over B and B is neat, it is easy to see that A is topologically free.

Proposition 16.6. (a) R, is topologically free of rank n™ over R,
(b) R, is topologically free of rank r! over S,
(c) R, is topologically free of rank n"r! over S,
(d) S, is topologically free of rank n" over S,
(e) R. is a finitely generated module over S, and S, is neat in R,.
Moreover, in each of the four rings there is a finitely generated ideal J such that {J™ | m > 0}
is a basis of open ideals.

The proof will follow after a number of lemmas. In Corollary 16.14, we will extend part (e) by
proving that R, is a projective module of rank 7! over R,..

Lemma 16.7. Suppose we have a ring A and elements ay,...,a, € A, and we put I,, =
(@, ...,a™). Then Iln(mfl)+1 < I, < IT*, so the topology defined by the ideals I, is the same as
that defined by the ideals I7".

Proof. The ideal I" is generated by the monomials [, aj* for which ), v; = m. It is clear from
this that I,,, < I", and thus that I]" is open in the topology defined by the ideals I},. Now suppose
we have a monomial [], a;* that is not contained in I,,,. This means that v; < m — 1 for all i, and
thus Y7, v; < n(m — 1) + 1. By the contrapositive, we see that I?(m_1)+1 < I,,, so I,, is open
in the topology defined by the ideals I}. O

Lemma 16.8. Let A be a linearly topologised ring with a continuous action of a finite group
G. Suppose that there exists a finitely generated G-invariant ideal I = (a1,...,a,) such that
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{I™ | m > 0} is a basis of open ideals. Then AC is neat in A. Moreover, if A is faithfully flat
over A% then {(I)™ | m > 0} is a basis of open ideals in AC.

Proof. Put r = |G|. For any a € A, put ¢a(t) = [[,c5(t — g.a), s0 ¢a(a) = 0. If J is any
G-invariant ideal containing a we see that ¢,(t) € " + J[t], so the equation ¢,(a) = 0 gives
a” € A.JY. Thus, all elements of J are nilpotent modulo A.J%. If J is finitely generated we
deduce that there exists s > 0 with J* < A.JC.

Now apply this with J = I™; we see that A.(I™)% contains I™® for some s, and thus is open.
This shows that A“ is neat in A.

Now suppose that A is faithfully flat over AY. We claim that (I“)™ is open in A®. Indeed,
the above shows that for large j we have I/ < A.I¢. Tt follows that I/™ < (I A)™ = A.(IF)™.
It is also clear that A.(I'™)¢ < '™ so A.(I'™)¢ < A.(I9)™. By faithful flatness, for any
ideals J,.J' < A% we have A.J < A.J' iff J < J'. We deduce that (I'™)¢ < (I¢)™. The ideal
(I’™)¢ = 7™ N A% is open in the subspace topology, so the same is true of (I¢)™. We also have
(I)™ < (I™)% and the ideals (I™)% form a basis of neighbourhoods of 0; it follows that the same
is true of the ideals (I9)™. O

Corollary 16.9. Let A, I and G be as in the lemma, and let H be a subgroup of G. Suppose that
the inclusion A” — A is faithfully flat, and that I is finitely generated. Then AC is neat in A,

Proof. The lemma (with G replaced by H) tells us that {(I7)™ | m > 0} is a basis of open ideals

in AH. As Il is finitely generated, the same is true of (I#)™, say (I¥)™ = (by,...,b,). Consider

the polynomial ¢y, (t) = [],(t — g.b;) as in the proof of the lemma. As b; € (I'ym C I™, we see

that ¢, (t) € t™ + (I™)“[t]. Using the relation ¢y, (b;) = 0 we see that b7 € (I™)9AH  so
(Hymer=D < (B, ) < (I 9 AR,

so (I™)% AH is open in A, As the ideals (I™)% are a basis of open ideals in A%, we deduce that

A% is neat as claimed. O

Lemma 16.10. Suppose that A = k[y1,...,yr], with the evident action of G = X,, and with
topology determined by the powers of the ideal I = (y1,...,yr). Let H be a subgroup of G of the
form X, x...x X, , withr=r1+ ...+ 1. Then

(a) A is topologically free of rank |G| = r! over A

(b) A is topologically free of rank |H| =[], r;! over AH

(c) A is topologically free of rank |G/H| over A¢

(d) The topology on AT (resp. AC) is determined by powers of the ideal I (resp. IG), which

is finitely genmerated.
Proof. Tt is well-known that AY = k[uy, . . ., u,], where u; is the i’th elementary symmetric function
in the variables y;. Similarly, we have A = k[vy,...,v,], where vy,...,v,, are the elementary
symmetric functions of y1,...,Yr, and vp, 41,...,Vp +r, are the elementary symmetric functions
of Yri41,- -+, Yr+r, and so on. By considering the maps
A9 — A" 5 A - AJT =k,

we see that I¢ = (u1,...,u,) and I = (v1,...,v,), so in particular these ideals are finitely
generated.

We next claim that A is algebraically free of rank |H| over AZ. Everything is compatible with
base change, so it will be enough to prove this when k = Z. In this case, all the rings involved
are Noetherian domains with unique factorisation and the claim is a standard piece of invariant
theory. Similarly, we see that A and A are algebraically free of the indicated ranks over A%, and
so the inclusions A9 — AH — A are faithfully flat.

Using Lemma, 16.8 and Corollary 16.9 we deduce that the inclusions A9 — AH — A are neat.
A neat extension that is an algebraically free module is always topologically free, which proves (a),
(b) and (c). We have seen that I and I'T are finitely generated, and the rest of (d) follows from
Lemma 16.8. O

Proof of Proposition 16.6. Claim (a) is clear. Claim (b) follows from part (a) of Lemma 16.10 by
passing to completions, and part (c) follows immediately from (a) and (b).
For claim (d), put

A'={a € A|a; <n for all i}
B' =A'"/S, ={Be€B|Bj=0forall j >n}.
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For B € B' we put Hg = [[; X5, < ., s0 7 {8} ~ £, /Hs. As A’ is a basis for R, over R,, we

deduce that S, = R} is isomorphic to P, R as a module over S,. It will thus suffice to show
that k[yi,...,y-]¢ is topologically free of rank |X,./Hg| over k[yi,...,y-]*", and this follows
from part (¢) of Lemma 16.10 by passing to completions.

For part (e), note that R, is finitely generated over S, and thus is certainly finitely generated
over the larger ring S,.. Neatness follows from Lemma 16.8.

Finally, we must show that for each of our rings there is a finitely generated ideal J whose
powers determine the topology. For R,., we can obviously take .J to be the ideal I, := (yi,...,yr).

Lemma 16.8 tells us that for S, we can use the ideal J, := TTET_: (u1,...,u,). For S, (which is
topologically fr_ee over S,.) we can therefore use the ideal J,. := J.S,. Similarly, for R, we can use
the ideal I, = I.R,.. O

Lemma 16.11. If the curve C is embeddable, then R, is topologically free of rank r! over S,.

Proof. We may assume that

C = spf(klz]},) = li_n}spec(k[x]/f(x)m)

m

for some monic polynomial f(z). Put A = k[z1,...,2,], and give this the topology determined by
the powers of the ideal I = (f(z1),..., f(z,)), so C" = spf(A}). The evident action of G := X, on
A is continuous, and A is free of rank r! over A%. We see from Lemma 16.8 that A“ is neat in A,
so A is topologically free over A® of rank !, and the claim follows by passing to completions. [

Lemma 16.12. Let A be a ring, M a finitely generated A-module, and B a faithfully flat A-
algebra. Suppose that B @4 M is a free B-module of rank s. Then M is a projective A-module of
the same rank.

Proof. First, we claim that if m is a maximal ideal in A with residue field K = A/m, then
dimg (K ® 4 M) = s. Indeed, by faithful flatness there exists a prime ideal n < B with nN A = m.
Using Zorn’s lemma we can find a maximal element of the set of all such ideals n, and this is easily
seen to be a maximal ideal in B. It follows that the residue field L = B/n is a field extension of
K, so

dlmK(K ®A M) = dlmL(L Rk K ®4 M) = dlmL(L ®XB (B Ra M)),

which is evidently equal to s.

We now choose a finite generating set {my,...,m;} for M. For each subset S C {1,...,t} with
|S| = s, we let fs: AS — M be the map a > s asmg, and we let Ps and Qg be the kernel and
cokernel of fg.

Next, we put Is = ann(Qs) < A. If m is maximal as before, we claim that there exists S such
that Is £ m. Indeed, as dimg (K ® M) = s, we can certainly choose S such that {m; | i € S} gives
a basis for K ® 4 M. It follows that K ® 4 Qs = 0, or equivalently that m@)s = QQs. The module
(s is generated by the elements m; for j € S, so we can find elements u;, € m for each j,k ¢ S
such that mj = )", ujzmi. Let U be the square matrix with entries u;; and put u = det(I — U).
As in [13], we see that u =1 (mod m) and u € Ig, so Is £ m as claimed.

It follows from this claim that )¢ I's is not contained in any maximal ideal, so ) ¢ Is = A.
We can thus choose ag € Is with ) gas = 1. It follows that spec(A) is the union of the basic
open subschemes D(ag) = spec(Afag']).

We have asQs = 0 and so Qs[ag'] = 0, so the map fs becomes surjective after inverting
as. It follows that the resulting map 1 ® fs: Blag']® — Blag'] ®4 M is also surjective. Here
both source and target are free modules of the same finite rank over Blag'], so our map must
in fact be an isomorphism. As Blag'] is faithfully flat over Afag'], we deduce that fs actually
gives an isomorphism A[ag']® — M[ag']. This shows that M is locally free of rank s, and thus is
projective. O

Corollary 16.13. Let k be a ring, and let A be a formal k-algebra whose topology is defined by
the powers of a single open ideal J (so A = I‘EI A/J™). Let M be o finitely generated A-module
such that M = lan M/J"M. Let k' be a faithfully flat k-algebra, and put A' = k'®A and

M' = KE'®yM = A'@sM. Suppose that M' is a free module of rank s over A'; then M is a
projective module of rank s over A.
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Proof. First, note that the map A/J™ — A'/J™A" = k' @ A/J™ is a faithfully flat extension
of discrete rings. We can thus apply the lemma and deduce that M/J™M is a finitely generated
projective module of rank s over A/J™.

Next, as M is finitely generated, we can choose an epimorphism f: A* — M for some ¢. Let
X, be the set of A-module maps g: M/J™M — (A/J™)! such that the induced map

MJJ™M % (A)T™y¢ L My
is the identity. As M/J™M is projective over A/J™, we see that X, is nonempty. There is an
evident projection 7, : X,;;, = X,,—1, which we claim is surjective. Indeed, given g € X,,,_1 we can
use the projectivity of M/J™M again to see that there exists amap h: M/J™M — (A/J™)! lifting
g. Let & be the determinant of the resulting map fh: M/J™M — M/J™M,sod € A/J™. Because
g € Xm_1, we see that § maps to 1 in A/J™~1. As the kernel of the projection A/J™~1 — A/J™

is nilpotent, it follows that ¢ is a unit, so fh is an isomorphism. After replacing h by h(fh)~! we
may assume that fh =1, s0 h € X,, and 7(h) = g. It follows that 1<£n Xm # 0, and this gives a
m

map g: M — At with fg = 1. Thus, M is a retract of a free module, and hence is projective. [

Corollary 16.14. R, is a projective module of rank r! over S,, so the projection C*™ — C" /X, is
a finite, faithfully flat map of degree r!.

Proof. In Corollary 16.13, we take A = S, and M = R,.. We know from Proposition 16.6 that
the topology on S, is determined by powers of the ideal J,. = (u1,...,u,), and that S, is neat
in R,. This means that the given topology on R, is determined by the ideals J*R,. As R, is
complete, we deduce that R, = h£1 R./J™R,.. We next take k¥’ = Og to be a faithfully flat

extension of k such that the curve ' = §’ x g C'is embeddable; this is possible by Corollary 15.3.

Using Lemma 16.11, we see that M’ is topologically free of rank r! over A’, so we can apply
Corollary 16.13 and deduce that R, is projective over S,. |

17. CLASSIFICATION OF DIVISORS
Our main task in this section is to prove the following result.

Theorem 17.1. Let C be a formal multicurve over a scheme S. Then for formal schemes S’ over
S, there is a natural bijection between divisors of degree r on S' xg C and maps S' — C" /X, over

S.

Construction 17.2. We must first construct a universal example. We start by putting A; =
{(ay,...,a,,b) € C™1 | b = a;}, which is a divisor of degree one on C over C". If we define
di(a,b) = d(a;,b) then Oa, = Ryy1/d;. Now put 8, = [[;d; € Ryy and D, = 3, A; =
spf(Ry11/8,), which is a divisor of degree r on C over C"*1. On the other hand, we note that
o, € Riﬁl = S, &R, so we can define D, = spf((S.®R)/d,), which is a closed formal subscheme
of C" /%, xg C. Tt is clear that R, ®s, Op, = OBT, which is free of rank r over R,.. We know
from Corollary 16.14 that R, is faithfully flat over S,., and it follows from Lemma 16.12 that Op,
is a projective module of rank r over S,. Moreover, the relevant ideal is generated by the regular
element d,, so D, is a divisor on C over C"/%,.

Now put @, = C"/%, for brevity. As in Section 16, we choose a topological basis {e;} for
Oc, and use it to construct a topological basis {e; | 3 € B} for Og,. We then put M =
spec(Z[to, t1,...]), and put g = Y, tie;, regarded as a function on M x Q, x C. We then put

h = Nuxp,mxq,(9) € Omxq, = [ Oslt: | i > Olep.
B

We claim that h is actually equal to 5 8 6’6‘ Indeed, although this is an equation in O« , , it will
suffice to prove it in the larger ring Oprxc-. In that context, we can describe has N, B, /MxCr (9)-
Now let 7;: C" — C be the j’th projection. Using Proposition 14.13 we see that h = ]_[j g =
[1; >°; timjei. Expanding this out gives

h=2t7(0‘)ea=z t8 Z €o =Ztﬁeg

acA BEB T(a)=p8 BEB

as claimed.
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Now suppose we have a map ¢: S’ — Q, over S, and D = ¢*D,. over S'. We deduce easily that
pp

Nuxp/mxs (g) = Z tﬁC*(elﬁ)-
B

This shows that c*(ej;) depends only on D, and {ej; | B € B} is a topological basis for S, so the
ring map ¢*: S, — Og depends only on D, so the map ¢: S' - C"/X, depends only on ¢. We
record this formally as follows:

Proposition 17.3. Suppose we have two maps cp,c1: S' — C" /%, over S, and that ¢§D, = ¢ D,
as divisors over S'. Then cy = c;. O

Proof of Theorem 17.1. Let S’ be a scheme over S, and let A be the set of maps S’ — C"/Z,. over
S, and let B be the set of divisors of degree » on C over S’. The construction ¢ — ¢*D, gives
a map ¢: A — B, which is injective by Proposition 17.3. To show that ¢ is surjective, suppose
we have a divisor D € B. We can choose a faithfully flat map ¢: T — S’ such that ¢*D has a
full set of points, say u = (u1,...,u,). We deduce that ¢*D is the pullback of D, along the map

T = C7, and thus is the pullback of D, along the composite ¢ = (I’ = C” — C"/%,.). Now let
qo,q1: T X T — T be the two projections, so qqo = qq1. Note that

(cgo)* Dy = goc* D = q5q" D = (940)" D,
and similarly

(cq1)"D; = gic*D; = ¢i¢"D = (qq1)*D.
As qqo = qq1 we see that (cqg)*D = (cq1)*D, and so (by Proposition 17.3) we have cgo = cqi-
By faithfully flat descent, we have ¢ = ¢q for a unique map ¢: S’ — C"/¥,. We then have
¢*¢*D, = ¢*D, = ¢*D, and using the faithful flatness of ¢, we deduce that D = ¢*D, = ¢(c).
This shows that ¢ is also surjective, and thus a natural bijection. |

Definition 17.4. In the light of Theorem 17.1, it makes sense to write Div; (C) for C"/Z,. The
evident projection

C"/S x5 C? 8 = C™°)(Z, X By) = C"F8 /8,45
gives a map

ors: Divi(C) xs Divi(C) = Divi,,(0).

It is easy to check that this classifies addition of divisors, in the following sense: if we have divisors
D =u*D, and D' =v*D; on C over S', then D + D' = w*D, s, where

w = (8" 2 Div(C) x5 Divy (C) S Divy, ,(C)).

We put Divt(C) = [[, Div;}'(C). As one would expect, this is the free abelian monoid scheme
generated by C; see [15, Section 6.2] for technical details.

Definition 17.5. Now suppose that C has an abelian group structure, written additively. We
can then define ji: C" xg C®* — C™ by

flao, ..., ar-15b0, ..., bs-1)iyr; = a; +b;

(for 0 <i < rand 0 < j < s). The composite
CmxgC* & o 4 ooy,

is invariant under ¥, x ¥4, so we get an induced map

tr,s: Div,y(C) x g Divs(C) — Div,s(C).
If we have divisors D = u*D,. and D' = v*D, on C over S’, then we define D * D' to be the divisor
w*D,s, where

w = (8" %% Divt(C) x5 DivF(C) & DivE,(C)).

We call this the convolution of D and D'. This operation makes Divt(C) into a semiring. If we
have full sets of points, say D =} [a;] and D' = }.[b;] then D x D" is just >, ;[a; + b;].

Proposition 17.6. Let D and D' be divisors on C over S. Then there exists a closed subscheme
T C S such that for any scheme S" over S, we have S’ xg D < S’ xg D' iff the map S' = S
factors through T .
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Proof. As Op is finitely generated and projective over Og, we can choose an embedding i: Op —
OY of Os-modules, and a retraction r: O — Op. We then have i(fp/) = (a1,...,an) for
some elements a; € Og, and we put J = (a1,...,an) and T = spec(Og/J). We find that a
map S’ — S factors through T iff J maps to 0 in Og, iff fpr maps to 0 in Ogr @, Op, iff
S'xsDCS' xgD'. O

Proposition 17.7. Let D be a divisor on C over S, and suppose that r > 0. Then there is a
scheme Sub,.(D) over S such that maps S’ — Sub,.(D) over S biject with divisors D' < 8" xg D
of degree r.

Proof. Over the formal scheme Div,"(C) we have both the originally given divisor D and the
universal divisor D,. We let Sub,.(D) denote the largest closed subscheme of Div; (C) where D,
is contained in D (which makes sense by Proposition 17.6). It is formal to check that this has the
required property. O

Proposition 17.8. Let D be a divisor on C over S, and suppose that r > 0. Then there is a
scheme P,(D) over S such that maps S' — P,(D) over S biject with lists (u1,...,u,) of sections
of C over S" such that ) [u;] < S’ xs D.

Proof. Over the formal scheme C” we have both the originally given divisor D and the divisor
Dr. We let P.(D) denote the largest closed subscheme of C™ where D, is contained in D (which
makes sense by Proposition 17.6). It is formal to check that this has the required property. O

Remark 17.9. Suppose that D has degree r. Then P, (D) classifies r-tuples for which ) [u;] < D,
but by comparing degrees we see that this means that ) ,[u;] = D. Thus, P, (D) classifies full sets
of points for D.

Lemma 17.10. Suppose we have ring maps A — B — C, and C is a projective module of degree
m > 0 over B, and also a projective module of degree nm > 0 over A. Then B is a projective
module of degree n over A.

Proof. We can use the second copy of B to make Hom 4 (B, B) into a B-module. For any B-module
N there is an evident map Hom 4 (B, B) ® g N — Hom 4 (B, N). This is evidently an isomorphism
if N is a free module of finite rank, and thus (by taking retracts) also when N is projective of finite
rank over B. In particular, we have Hom4 (B, B) ® g C = Hom4(B, (). As C is also projective
over A, the same kind of argument shows that

HOrnA(B,C) = HOmA(B,A) ®aC = (HOmA(B,A) RAa B) ®p C.

It follows that (Homy (B, A) @4 B) g C = Hom 4 (B, B) ® g C. More precisely, there is a natural
map
a: Homy(B,A) ®4 B — Homu(B, B),

given by a(¢ ® b)(b') = ¢(b')b. By working through the above argument more carefully, we
see that a ® g 1¢ is an isomorphism. However, C' is faithfully flat over B so « itself must be an
isomorphism. In particular, we see that 1p lies in the image of a, so 1p = Zf; a(p; ®b;) for some
maps ¢;: B — A and elements b; € B. This means that for all b € B we have b =), ¢;(b)b;. We
can use the elements ¢; to give amap ¢: B — A", and the elements b; to give a map 3: AN — B.
We find that S¢ = 1, which proves that B is projective. It is now clear that the rank must be
n. O

Proposition 17.11. Let D be a divisor of degree s on C over S, and suppose that 0 <r < s. Then
there are natural maps P.(D) & Sub,(D) % S which are finite and very flat, with deg(p) = r!
and deg(q) = s!/(r!(s — r)!) (so deg(gp) = s!/(s —r)!).

Proof. Over P,(D) we have tautological sections uy,...,u, of C' giving a divisor D;. := >~ [u]
on C. This is contained in (gp)*D, so we can form the divisor D} := (gp)*D — D,., which has
degree s — r over P.(D). It is easy to identify P..;(D) with D!, so deg(P.41(D) — S) =
(s —r)deg(P-(D) — S). By an evident induction, we see that the map pq is finite and very flat,
with degree s!/(s — r)!, as claimed.

Next, let D be the tautological divisor of degree 7 on C over Sub,(D). We can then form
the scheme P,.(D), which classifies full sets of points on D. As above, we see that the map
P,(D) — Sub,(D) is finite and very flat, with degree r!. We claim that P,(D) = P.(D). Indeed,

amap S’ — P.(D) over S corresponds to a map S’ — Sub,.(D), together with a lifting to P.(D).
Equivalently, it corresponds to a divisor of degree r contained in S’ xg D, together with sections
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u1,...,ur: S" = C giving a full set of points for that divisor. The full set of points determines
the divisor, so it is equivalent to just give sections u; with ) .[u;] < S’ x5 D, or equivalently, a
map S’ = P.D over S. The claim follows by Yoneda’s lemma. It follows that the map p is finite
and very flat, with degree r!. We can now apply Lemma, 17.10 to see that q is finite and very flat,
with degree s!/(r!(s — r)!). O

Proposition 17.12. For the universal divisor D, over Div}(C) we have

Sub,(D;) = Div;}H(C) x5 Div} (C)

s§—r

P.(D,) = C" x5 Div}_.(C).

Proof. Let S’ be a scheme over S. Then a map S’ — Sub,(Ds) over S corresponds to a map
S' — Div,F(0), together with a lifting to Sub,. (D). Equivalently, it corresponds to a divisor D of
degree s on C over S’, together with a subdivisor D' < D of degree r. Given such a pair (D, D'),
we have another divisor D" = D — D', which has degree s — r. There is evidently a bijection
between pairs (D, D') as above, and pairs (D', D") where D' and D" are arbitrary divisors of
degrees r and s — r. These pairs correspond in turn to maps S’ — Div; (C) xg Divi_.(C) over
S. The first claim follows by Yoneda’s lemma, and the second claim can be proved in the same
way. O

Corollary 17.13. We have D, = Div}_(C) x5 C = C*/%, ;.
Proof. Take r = 1, and observe that P;(Ds) = Sub;(D,) = D, and Div{ (C) = C. O

18. LOCAL STRUCTURE OF Div}(C)

Let C be a formal multicurve over a base S. In the nonequivariant case, we know that
Div} (C) ~ spf(Osles, - - -,cn]) = A%, so Div)(C) is a formal affine space of dimension n over
S. Equivariantly, this is not even true when n = 1. However, we will show in this section that
Div} (C) is still a “formal manifold”, in the sense that the formal neighbourhood of any point is
isomorphic to &g, at least up to a slight twisting. Later we will apply this to calculate E°BU(V),
where BU(V) is the simplicial classifying space of the unitary group of a representation V' of A.

We state the result more formally as follows.

Theorem 18.1. Let C = spf(R) be a formal multicurve over S = spec(k), with a difference
function d. Let s: S — Div;}(C) be a section, classifying a divisor D = spf(R/J) C C. Then
the formal neighbourhood of sS in Div} (C) is isomorphic to the formal neighbourhood of zero in
Mapg(D,A}) (by an isomorphism that depends on the choice of d).

The rest of this section constitutes a more detailed explanation and a proof.

We first examine the two formal schemes that are claimed to be isomorphic. We put Ag =
(R®™")®» and Xy = spf(4y) = Div; (C). The section s corresponds to a k-algebra map Ay — k,
with kernel K say. We put A = (4Ag)% and X = spf(A). This is the formal neighbourhood of sS
in Div} (C).

Now consider the scheme Yy, = Mapg(D,Ay). For any scheme T over S, the maps T — Y,
over S are (essentially by definition) the maps D xg T — Al of schemes, or equivalently the
elements in the ring Op ®; Or. These biject with the maps O}, = Homy(Op, k) — Or of k-
modules, or with the maps By = Sym,[O))] = Or of k-algebras. Thus, we have Yy = spec(By).
We let B be the completion of By at the augmentation ideal, and put Y = spf(B), which is the
formal neighbourhood of the zero section in Y. Of course By is just the direct sum of all the
symmetric tensor powers of O}, and B is the direct product of the same terms. If Op is free over
k (rather than just projective) then B is isomorphic to kfcy, ..., ¢,]; in the general case, it should
be regarded as a slight twist of this. Note that maps T — Y over S biject with k-linear maps
0 — Nil(Or), or equivalently elements of Op ®j, Nil(Or). Note also that a choice of generators
z1,...,%, for O} gives a split surjection k[z1,...,z,] = B.

There is an evident map

a: Div}(C) = Xo = Yo = Mapg(D, A}),

sending the section s’ classifying a divisor D' to the function (fp/)|p: D — A!. This clearly sends
s itself to zero, so it sends the formal neighbourhood of s to the formal neighbourhood of zero, so
it gives a map a: X — Y. We shall show that this is an isomorphism.



MULTICURVES AND EQUIVARIANT COBORDISM 31

Note that because D and D' have the same degree, we have s’ = s if and only if fp is divisible
by fp, if and only if a(s') = 0. This shows that the kernel K of the map s*: A9 — k is generated
by the image under a* of the augmentation ideal in By. In particular, we see that K is finitely
generated.

Because Op = R/J is projective over k, we can choose a k-submodule P < R such that
R =P J. It follows that the map P — R — Op is an isomorphism, with inverse £ say.

Lemma 18.2. Let I < k be a finitely generated ideal with I™ = 0, and let g € R be such that
g= fp (mod IR). Then g is a regular element, the ideal Rg is open, and we have R = Rg & P.

Proof. A standard topological basis for R gives an isomorphism R = [], k, and using the fact that
I is finitely generated we see that IR = (IR)? =[], I?. We thus have a finite filtration of R with
quotients [], I7/I7+1.

Now consider the k-linear self-map of R given by Agfp +r) = qg+7r for ¢ € R and r € P.
This is easily seen to induce the identity map on the quotients of the above filtration, so it is an
isomorphism. It follows easily that g is regular and R = Rg & P.

As D is a divisor, we know that Rfp is open. Thus, for any good parameter y we have y' € Rfp
for large [, say y' = ufp. We also know that fp = g + h for some h € IR, so y' = uh (mod g).
As I'™ = 0 we have '™ = 4™h™ = 0 (mod g), so Rg is also open. d

We now define a map 8 from sections of Y to sections of X. A section of Y is an element
r € Nil(k)Op. As Op is finitely generated we have r € IOp for some finitely generated ideal
I < Nil(k), and by finite generation this satisfies I"™ = 0 for some m. We can thus apply the
lemma to the function g = fp + £(r) € R and conclude that the subscheme D’ = spec(R/g) is
a divisor of degree n, classified by a section s’ of Xy say. Over the subscheme spec(k/I) C S
it clearly coincides with s, so (s')*(K) < I, so (s")*(K™) = 0. This shows that s’ is actually a
section of X, as required. We can thus define f(r) = s'.

In order to define a map #: Y — X of formal schemes over S, we need to define maps fr from
sections of Y over T to sections of X over T, naturally for all schemes 7" over S. For this we just
replace C by T xg C, P by Or ®;, P and follow the same procedure.

We now define another map o': X — Y. It will again be sufficient to do this for sections
defined over S. Let s’ be a section of X, classifying a divisor D’. Put I = (s")*K < k; this is
finitely generated because K is, and nilpotent because s’ lands in X. Over spec(k/I) we have
D' = D, so fpr = fp (mod IR). The lemma tells us that R = Rfp: & P, so there are unique
elements h € R and p € P such that fp = hfp: — p. By reducing modulo I we see that h = 1
(mod IR) and p € IP. We let r be the image of pin R/fp = Op, sor € IOp and £(r) = p. The
map o' : X = Y is defined by o'(s') = r. Note that h is invertible so fp is a unit multiple of
fp+p=fp+&(r),so D' =spec(R/(fp +&(r))) = B(r). This shows that fa’ = 1.

In the other direction, suppose we start with r € IOp and put D' = spec(R/(fp + &(r)))
(corresponding to B(r)). There is then a unique element p € P congruent to —fp modulo fpr,
and o' f(r) is by definition the image of p in Op. It is clear that — fp is congruent to £(r) modulo
fp + &(r), which is a unit multiple of fp:, so p = &(r) and o'B(r) = r. This shows that o/8 =1,
so ' and 3 are isomorphisms.

We actually started by claiming that the (slightly more canonical) map « is an isomorphism.
As ( is an isomorphism, it suffices to check that the map af8: Y — Y is an isomorphism, or that
(af)* is an automorphism of Oy = B. As B is the completed symmetric algebra of a finitely
generated projective module, it will suffice to show that (a8)* is the identity modulo the square of
the augmentation ideal. By base-change to the universal case, it will suffice to show that a8(r) =r
whenever r € IOQp with I2 = 0. Given such an r, we form the divisor D' = spec(R/(fp + £(r)))
corresponding to ((r), and observe that fpr = u(fp + £(r)) for some u € R*. As fp = fp
(mod IR) we must have v = 1 (mod IR). As £(r) € IR and I? = 0 we have ué(r) = £(r) and so
for =&(r) (mod fp), so aB(r) = r as claimed.

19. GENERALISED HOMOLOGY OF GRASSMANNIANS

Consider a periodically orientable theory E with associated equivariant formal group C =
spf(E°PU) over S = spec(E®). Let G,U be the space of r-dimensional subspaces of U, and put
GU = 11,2, G,U. Here we reprove the following result from [5].
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Theorem 19.1 (Cole, Greenlees, Kriz). There are natural isomorphisms
E.G.U = (E*PL{)%:
E*G,U = ((E*Pu)ér)zr
spf(E°G.U) = C"/%,.
We first introduce some additional structure. For any complex inner product space V', we put

Ry(V) =%VGV, =\/VG,V;.

Using the evident maps G,U x G,V — Gr4s(U ® V) we get maps py,v: Ro(U) A Ry(V) —
Ro(U ® V). We also have inclusions ny: SY = SVGoU; — Ro(U). These maps make Ry into
a commutative and associative ring in the category of orthogonal prespectra [12]. All this works
equivariantly in an obvious way. The weak homotopy type of Ry is

: —Uyoo : [e*S) [e'S) [e'S)
Ry = lim XY Ro(U) = lim S°GUy = E°GU; =% (HGM) :

v [« T +
We write @, Ro for the subfunctor V — XV G, V4, so that Ry =/, @, Ro and Q, Ry ~ G,U;. In
particular, we have Qo Ry = S° and Q, Ry = PU, . This gives a map FE.PU — E.Ry and thus a
ring map Symp E,PU — E,Rq. The theorem says that this is an isomorphism. For the proof,
we need some intermediate spectra. For any representation W, we put

Q’I"RW(V) — EVGrvHom(T,W)
Rw (V) = \/ Q-Rw (V) = £V GyHom(T:W),

This again gives a commutative orthogonal ring spectrum, with weak homotopy type Ry =~
GUHem(T:W) In the case W = 0 we recover Ry as before. An inclusion W — W' gives a ring map
i: Rw — Ryw:. In particular, we have a ring map Ry — Ry, whose fibre we denote by Jy . This
is weakly equivalent to the stable fibre of the zero section GU; — GL{fom(T’W), and thus is the
sphere bundle of the bundle Hom (7T, W) over GU.

Next, recall that there is an isometric embedding &/ @ W — U, and that the space of such
embeddings is connected. We have

Q1Rw = PU™(TW) — Py & W)/PW ~ PU/PW.

Using this, we have a diagram as follows, in which the rows are cofibrations:

L

Jw Ry Rw.

The map PU/PW — Rw gives a ring map
Ow: Sympg, E.(PU,PW) — E.Rwy.
Theorem 19.2. The above maps Ow are isomorphisms.

The proof will be given after some preparatory results.

First, suppose we have representations W and L with dim(L) = 1. We put W/ = W @ L and
investigate the fibre of the map Ry — Ry+. We may assume that W' < U, and then we have a
ma

P SHom(L,W) — PLHom(T,W) C PuHom(T,W) N RW:
which we denote by by,.. Multiplication by by 1 gives a map SH™(LW) Ry — Ry, which we
again denote by bw,z. (Note that this sends ZH™(EW)Q, Ry, into Q11 Rw, or in other words,
it increases internal degrees by one.)

Proposition 19.3. The sequence
b
EHom(L’W)RW ﬂ) Rw — RW@L = Rw:

s a cofibration.
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Proof. This is a special case of the following fact. Suppose we have a space X with vector bundles
U and V. Let S(U) for the unit sphere bundle in U, and D(U) for the unit disc bundle, so XY is
homeomorphic to D(U)/S(U). We can pull back V along the projection ¢: S(U) — X and thus
form the Thom space S(U)¢" V. It is not hard to see that there is a cofibration
STV - xV - xvev,

We will apply this with X = GU and V = Hom(T,W) and U = Hom(T, L), so that X" = Ry
and XV®V = Ry.. To prove the proposition, we need to identify S(U)?V with SHom(LW) Ry,

To do this, observe that S(U) is the space of pairs (M,a) where M is a finite-dimensional
subspace of Y and a: M — L is a linear map of norm one. As L has dimension one, we find that
a can be written as the composite of the orthogonal projection M — M Sker(a) with an isometric
isomorphism M & ker(a) — L. Using this, we identify S(U) with the space of pairs (N, 3), where
N is a finite-dimensional subspace of &/ and f: L — U © N is an isometric embedding; the
correspondence is that M = N @ (L) and

a=(NapI) 2% 1) 25 1.

We can thus define a map k: S(U) — GU by k(N,B) = N (or equivalently, k(M,a) = ker(a)).

This makes S(U) into an equivariant fibre bundle over GU. The fibre over a point N € GU is the

space L(L,U S N), which is well-known to be contractible, and the contraction can be chosen to be

equivariant with respect to the stabilizer of N in A. It follows that k is an equivariant equivalence.
To understand the inverse of k, recall that L < W' < U, so we can put

Y ={N € GU | N is orthogonal to L} = G{U © L).
Define j: Y — X by j(N) = N & L, and then define j: Y — S(U) by
J(N)=(N@® L,proj: N® L — L),
so qj = j. Clearly kj: Y = GUU S L) - GU = X is just the map induced by the inclusion
USL — U. As the space of linear isometries between any two complete A-universes is equivariantly
contractible, we see that this inclusion is an equivariant equivalence. As the same is true of k,
we deduce that j is also an equivariant equivalence. We can thus identify S(U) with Y and
q: S(U) —» X with j: Y — X. It follows that we can identify ¢*V with j*V, but the fibre of j*V
over a point N € Y is Hom(j(N), W) = Hom (L, W) & Hom(N, W), so
Yj*V — EHOm(L,W)yHOm(T,W) ~ EHom(L’W)RW.
This gives a cofibration SH™EWIRy — Ry — Ry, and one can check from the definitions
that the first map is just multiplication by bw, 1. |

Now choose a complete flag
0=MWo<W <...<U,
where dim¢c W; =4 and U = h_rr>1 W;. Put R(i) = Rw,, so we have maps
Ry =R(0) > R(1)—=>R(2)—....
Put L; = W1 © W; and U; = Hom(L;, W;) and b; = bw;,1;, so we have a cofibration
SUiR(i) ¥ R(i) — R(i +1).

Lemma 19.4. Suppose that B < A, and split W as @z p. W([B] in the usual way. Then

—B

¢ Rw= /\ Rwp,

peB*

where as before .
W= {we W | bw =Py for all b € B},

and so the connectivity of (EBRW)/SO is at least ming (2 dimc(W[B]) — 1).

Proof. We have

EBGU = (GU)®P = { B-invariant subspaces of U }.
Any complex representation U of B splits as € s U [8], so a subspace U < U is invariant iff it is
the direct sum of its intersections with the subspaces U[S]. It follows that

Gu)® =TJ cug) ~ [] Gc=.
B B
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We have a tautological bundle T[] over GU[S], and the bundle Homcg (T, W) over (GU)® is the
external direct sum of the bundles Home(T[3], W[3]). The Thom complex GU[g]Hom(TIBLWIBD ig

just Ryg), and it follows that [(GZ/{)HO"‘(T’W)]B is just the smash product of these factors, as
claimed.

For the last statement, note that if X is a space and U is a vector bundle of real dimension d
over X, then XU is always (d — 1)-connected. Now let V be a complex universe, and V a complex
vector space of finite dimension d. The bundle Hom(T, V') over G,V has real dimension 2rd, so
conn(Q-Ry) > 2rd — 1, and

conn(Ry /S%) = conn(\/ Q-Ry) >2d-1.
r>0
The claim follows easily. O

Corollary 19.5. li_r>ni R(i) = S°.

Proof. The unit map S® — QoR(i) is an isomorphism for all 4, so h_r}nz QoR(i) = S° Tt will
thus suffice to show that h_r)nz R(i)/S° = 0, or equivalently that the spectrum aB (h_r)nl R(i)/S°%) =
h_r>nl(($BR(z)) /S°) is nonequivariantly contractible for all B. As U is a complete universe, we have

dim W;[f] = o0 as i — oo for all 3, so conn(aBR(i)/SO) — 00, and the claim follows. O

We now let E be a periodically oriented theory, with orientation z say. This gives a universal
generator u; for FoSYi, and a basis {¢; | i > 0} for EgPU. Put
ER(i) = Symy, B.(PU, PW;) = E.[e; | j > i) = ER(0)/(cx | k < ),

and let Q,FR(i) be the submodule generated by monomials of weight  (where each generator c;
is considered to have weight one). We then have maps

0; = Ow, : ER(Z) — E*R(Z),
which restrict to give maps

Oir: QrER(i) = E.Q.R(7).
The elements u; and ¢; are related as follows: the inclusion PL; — PU gives an inclusion SYVi —
PYHom(T:Ws) ~ p1f/PW;, and the image of u; under this map is the same as the image of ¢; under

the evident quotient map PU — PU/PW;. It follows that the cofibration XVi R(i) LIN R(i) —
R(i + 1) gives rise to a cofibration
EAR() < EAR(G) —» EAR(I + 1),
which restricts to give a cofibration
EANQ,_1R(G) 2 EAQ.R(i) = EAQ.R(i + 1).
Proposition 19.6. The maps 0;. are isomorphisms for all i and r.

Proof. The maps 6o and 6;; are visibly isomorphisms, so we may assume inductively that 8; ,_,
is an isomorphism for all j. The cofibration displayed above gives a diagram D(i) as follows:

Qr—1ER(i) =~ Q,ER(i)) — Q,ER(i +1)
Oir—1 |~ 0i,r Oit1,n

E.Qr1R() —— F.Q:R() —— E.Q.R(i+1)

We first prove that 6;,. is surjective for all i. Let ©(¢) be the image of 6;., so the claim is that
0(i) = E.Q-R(i). For j > i we write K(j) for the kernel of the map E.Q,R(i) = E.Q,.R(j).
Clearly K(i) = 0 < O(7), and by chasing the diagram D(j) we see that if K(j) < ©(i) then
K(j+1) <©O() also. Corollary 19.5 now tells us that E.Q,R(i) = J; K(j) < ©(i,r) as required.

We now see that in D(j), the vertical maps are surjective, so g, is surjective. As the bottom
row is part of a long exact sequence and the right hand map is surjective, we conclude that the
bottom row is actually a short exact sequence. Using the snake lemma, we conclude that the
induced map ker(6;,) — ker(6;41,,) is an isomorphism. It follows that for any m > j, the map
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ker(6;r) — ker(6p,) is an isomorphism. However, we have ker(d;,) < Q.ER(j), and it is also
clear that when r > 0, any element of Q.ER(j) maps to zero in Q.ER(m) for m > 0. It follows
that ker(;,) must be zero, so §;, is an isomorphism as claimed. a

Proof of Theorem 19.2. Given any subrepresentation W < U, we can choose our flag {W;} such
that W = W; for some i. The theorem then follows from Proposition 19.6. |

20. THOM ISOMORPHISMS AND THE PROJECTIVE BUNDLE THEOREM

Let E be a periodically orientable A-equivariant cohomology theory, with associated equivariant
formal group (C, ¢) over S. For any A-space X, we will write Xg = spf(E°X).

Now let V be an equivariant complex vector bundle over X. We write PV for the associated
bundle of projective spaces, and XV for the Thom space (so XV = P(V @C)/PV). In this section,
we will give a Thom isomorphism and a projective bundle theorem to calculate E*XV and E*PV.

First, it is well-known that equivariant bundles of dimension r over X are classified by homotopy
classes of A-maps X — G,U. We saw above that E°G, U = S,, and moreover the standard
topological basis {ej} for S, is dual to a universal basis for E¢G,U. It follows that (G.U)r =
C" /%, = Div} (C).

Now let T denote the tautological bundle over G,U/. It is not hard to identify the projective
bundle PT — G,U with the addition map

Gr,lu x PU = G,«flu X Glu - GTU,

and thus to identify E°PT with S,_1QR = O¢r/s,_,> 80 PTg = C"/Z,_1. On the other hand,
we can use Corollary 17.13 to identify C"/%,_; with the universal divisor D, over C"/%,.

Now suppose we have a vector bundle V' over X, classified by amap ¢: X — G.U,soc*T ~ V.
The map c is then covered by a map é: PV — PT, which gives a map é*: Op, = E°PT — E°PV.
We can combine this with the evident map E*X — E*PV to get a map

HX,VZ Op, ®s, E*X — E*PV.

Theorem 20.1. For any X and V as above, the map Ox v is an isomorphism (and so E*PV is
a projective module of rank r over E*X ).

Proof. We first examine the simplifications that occur when V' admits a splitting V = L1 ®...® L,
where each L; is a line bundle. In this case, the classifying map X — G,.U factors through PU", so
the map S, — E°X factors through R,. As Op, ®s, R, = O B, We see that 0x v is the composite
of an isomorphism with a map

O v: Op, @, E*X — E*PV.

Next, choose a coordinate z on C and define a difference function d(a,b) = z(b — a) as usual.
Define a function d; on C™t! by

di(ala cee 5a7‘ab) = d(azab) = .'L'(b - CL,’),

as in Construction 17.2. We then put ¢; = Hj<i d;. It is easy to see that {ci,...,¢ } is a basis
for Op over R,, so 8 is just the map (E*X)" — E*PV given by (t1,...,t.) = 3, tic;.

Now consider the case where X is a point, so V' is just a representation of A. In this case there
is always a splitting V = L; & ... ® L, as above, where L; = L,, for some a; € A*. In this
case the image of ¢; in EOPV is just the element zy,_, from Corollary 5.5, so the map fx v is an
isomorphism.

More generally, suppose that X is arbitrary but V is a constant bundle, with fibre given by a
representation W = ). Ly, say. As the elements zy, form a universal basis for E* PW, we see that
E*PV = E*X ®p- E*PW = 651 E*.zy, and it follows easily that 8x v is again an isomorphism.

Now consider the case X = A/B for some B < A. It is easy to see that any bundle over X has
the form A xpg Wy for some representation Wy of B. However, as A is a finite abelian group, we
can find a representation W of A such that W|p = Wy, and it follows that A x p Wy is isomorphic
to the constant bundle A/B x W. It follows that §x v is again an isomorphism.

Now let X and V be arbitrary, and suppose we can decompose X as the union of two open
sets Xy and X, with intersection X5. Suppose we know that the maps fx,  are isomorphisms
for ¢ = 0,1 and 2; we claim that 6x y is also an isomorphism. Indeed, the decomposition gives
a Mayer-Vietoris sequence involving E*X. We can tensor this by the projective module Op,
over S,, and it will remain exact. Alternatively, we can pull back the decomposition to get a
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decomposition of PV, and obtain another Mayer-Vietoris sequence. The # maps are easily seen
to be compatible with these sequences, so the claim follows by the five lemma.

We can now now prove that fx,y is an isomorphism for all X and V, by induction on the
number of cells and passage to colimits. |

Corollary 20.2. If V is an equivariant vector bundle over X, then the formal scheme D(V) :=
PVg is a divisor on C over Xg, of degree equal to the dimension of V. Moreover, we have
DV aeW)=DV)+DW) and D(V@ W) =D(V)« D(W).

Proof. The first statement is clear from the theorem. We need only check the equation D(VeW) =
D(V) 4+ D(W) in the universal case, where X = G,U x GsU. As the map PU™* — G,U x GsU
induces a faithfully flat map C™* — C" /%, xs C? /3, it suffices to check that equation for the
obvious bundles over PU" 1% in which case it is clear. A similar approach works for convolution
of divisors. |

We next consider the Thom isomorphism.

Definition 20.3. Let C be a formal multicurve group over S, with zero section {: S — C. Given
a divisor D on C over S, we let Jp denote the kernel of the restriction map O¢c — Op, which
is a free module of rank one over Og. We also use the map (*: O¢ — Og to make Og into a
module over O¢, and we define L(D) = Os ®o, Jp, which is a free module of rank one over
Ogs, or equivalently a trivialisable line bundle over S. We call this the Thom module for D. More
generally, given a scheme S’ over S and a divisor D on C over S’, we obtain a trivialisable line
bundle L(D) over S'.

Remark 20.4. Note that ker(¢*) = J[O] and that JDJ[O] =Jp +[0]- Tt follows that
L(D) = JD/JD+[0] = ker(0D+[0] — OD).

Remark 20.5. If we fix a coordinate z and put d(a,b) = z(b — a), we get a generator fp for Jp
as in Definition 14.3, and thus a generator up = 1 ® fp for L(D), which we call the Thom class.
However, these generators are not completely canonical because of the choice of coordinate.

We also define the Euler class ep to be the element fp(0) = (*fp € Og. Note that if D = [u]
for some section u, then fp(a) = z(a — u) and so ep = z(—a) = T(a).

Remark 20.6. For any two divisors D and D', we have Jp,pr = JpJp:, which can be identified
with Jp ®o, Jp' (because Jp and Jpr are each generated by a single regular element). It follows
that L(D + D') = L(D) ® o, L(D"). In terms of a coordinate, we have upypr = up ® upr and
€pD+D’ = €EDEpD!.

Theorem 20.7. Let V be an equivariant complex bundle over a space X, giving a divisor D(V) =
PVg on C over Xg as in Corollary 20.2 and thus a free rank one module L(D(V)) over E°X.
Then there is a natural isomorphism E°XV = L(D(V)) (and E*XV = L(D(V)) ®gox E*X).
Moreover, if we choose a coordinate and thus obtain a Thom class upyy as in Remark 20.5, then
this gives a universal generator for E°X.

Proof. Consider the cofibration P(V) — P(V @ C) — X". Using Theorem 20.1 we see that
E*P(V) =FE*X Qpox OD(V)
E*P(VaC) = E*X ®gox Opwvec) = E*X ®pox Opv)+[o]-

As the map p: Op(vy4j0) = Op(v) is a split surjection of E°X-modules, we see that the long
exact sequence of the cofibration splits into short exact sequences. As ker(p) = L(D(V)), we see
that E*XV = L(D(V)) ®gox E*X. By looking in degree zero, we see that EOXV = L(D(V)).
As this isomorphism is natural in X, it is easy to see that the generator is universal. O

Remark 20.8. If we have two bundles V' and V', the above results give
EOXV®V' = L(D(V @ V")) = L(D(V) + D(V"))
= L(D(V)) ®pox L(D(V")) = E°XY @go E°XV".

One can check that this isomorphism EOXV@E°XV' = EOXV®V' is induced by the usual diagonal
map XVOV 5 XV A XV
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Definition 20.9. We write uy for up(y), and call this the Thom class of V. We also write ey
for ep(vy, and call this the Euler class of V. (Using Remark 20.5, we see that this is consistent
with the definition for line bundles given in Section 5.)

It is easy to see that the Euler class is the pullback of the Thom class along the zero section
X — XV, and that eygw = evew.

Now suppose that s < r = dim(V), and consider the space P.(V) consisting of all tuples
(z;L1,...,Ls) where x € X and the L; are orthogonal lines in V,,. Recall also that P.(D(V)) is
the classifying scheme for r-tuples (u1,...,u,) of sections of C' such that }",[u;] < D(V), as in
Proposition 17.8.

Proposition 20.10. There is a natural isomorphism P.(V)g = P.(D(V)).

Proof. For each i we have a line bundle over P.(V') whose fibre over (z, L1,...,L,) is L;. This is
classified by a map P,.(V) — PU, which gives rise to a map u;: P.(V)g — C. The direct sum of
these line bundles corresponds to the divisor [ui] + ... + [u,]. This direct sum is a subbundle of
V, 80 [u1] + ...+ [u,] < D(V). This construction therefore gives us a map P.(V)g = P.(D(V)).

In the case r = 1 we have Pi(V) = PV and P;(D(V)) = D(V) so the claim is that (PV)g =
D(V), which is true by definition. In general, suppose we know that P._1(V)g = P,_1(D(V)).
We can regard P.(V) as the projective space of the bundle over P,._; (V) whose fibre over a point
(%,L1,...,Ly_1) is the space V; 6 (L1 & ... ® L,_1). It follows that P.(V)g is just the divisor
D(V) — ([u1] + ... + [ur—1]) over P._1(D(V)), which is easily identified with P.(D(V)). The
proposition follows by induction. a

We next consider the Grassmannian bundle
G (V)={(z,W) |z € X, W <V, and dim(W) = r}.
Proposition 20.11. There is a natural isomorphism G.(V)g = Sub,.(D(V)).

Proof. Let T denote the tautological bundle over G,.(V). This is a rank r subbundle of the
pullback of V' so we have a degree r subdivisor D(T') of the pullback of D(V') over G,.(V)g. This
gives rise to a map f: G,(V)r — Sub.(D(V)), so if we put A = Ogyp,.(p(v)) We get a map
f*: A— E°G,(V), and we must show that this is an isomorphism. Now consider the tautological
divisor D of degree r over Sub,(D(V)). As the module B = Op, p is faithfully flat over A, it will
suffice to show that the map f*: B — B ®4 E°G,(V) is an isomorphism. However, we saw in
the proof of Proposition 17.11 that P.D = P,D(V) = (P,V)g, so B = E°P,V. If we let T be the
tautological bundle over G,V, it is easy to see that P,T = B,V and so B = E°P,.T = Op,p(T)-
It is also easy to see that D(T) = f*D, so P,D(T) = f*P,D, and so

B =0p,pry = E°G,(V)®4 Op 5= E°G(V) ®4 B,
as required. O
We conclude this section with a consistency check that will be useful later.

Definition 20.12. Given a one-dimensional complex vector space L and an arbitrary complex
vector space V, we define p: PV — P(L® V) by p(M) = L ® M. This is evidently a homeo-
morphism. If V has the form V = Hom(L,W) = L* @ W then we identify L ® V with W in the
obvious way, and thus obtain a homeomorphism p: P(Hom(L, W)) — PW. All this clearly works
equivariantly, and fibrewise for vector bundles.

Proposition 20.13. Let X be a space equipped with two complex vector bundles V and W. Let
p: PV — X be the projection, and let T be the tautological bundle over PV, so we have a bundle
Hom(T,p*W) over PV . Then there is a natural homeomorphism

P(V @ W)/PW = pyHom(Tp"W),
Proof. Put U = Hom(T,p*W)). We will construct a diagram as follows:
P

proj

PU - ~ (p*W) PV

iOI i1 } i2

P(CoU) —5— PT&p'W)—— P (VW) — P(VoWw)
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First note that the obvious map C — Hom(7,T) is an isomorphism (because T has dimension
one), so

Ce® U =Hom(T,T) ® Hom(T,p*W) = Hom(T, T & p*W).

Given this, it is clear that we have homeomorphisms p as indicated; this gives the left hand half
of the diagram, and shows that the cofibre of ig is homeomorphic to that of ;.

Next, observe that T is a subbundle of p*V so T @ p*W < p*(V @& W), so P(T @ p*W) C
P(p*(V @ W)) as indicated. There is also an obvious projection P(p*(V & W)) — P(V & W),
giving the right hand rectangle in the diagram. Note also that P(p*W) = p*PV = PV xx PW.

We next consider in more detail the map P(T @ p*W) — P(V @ W), which we shall call 7.
A point in P(T @ p*W) consists of a triple (z, L, M), where z € X and L is a one-dimensional
subspace of V, and M is a one-dimensional subspace of L & W,. We have 7(z,L, M) = (z, M) €
P(V & W). Suppose we start with a point (z, M) € P(V & W). If M € PW, then it is clear
that 77{(z, M)} = PV, x {M}. On the other hand, if M ¢ PW, then the image of M under
the projection V,, ® W, — V,, is a one-dimensional subspace L < V, and the point (z,L, M) is
the unique preimage of (z, M) under 7. This means that the rectangle is a pullback, in which
the horizontal maps are surjective. Using this, we see that 7 induces a homeomorphism from the
cofibre of 7; to that of is.

The cofibre of ig is PVVU, and the cofibre of iy is P(V @ W)/PW, so these are homeomorphic
as claimed. |

As a corollary of the above, we have E°(P(V @ W), PW) = ECPVHm(T»"W)  We can use the
projective bundle theorem and the Thom isomorphism to calculate both sides in terms of divisors,
and they are not obviously the same. Nonetheless, there is an isomorphism between them that
can be constructed by pure algebra, as explained in the following result.

Proposition 20.14. Let C = spf(R) be a formal multicurve group over S = spec(k), equipped
with two divisors P = spec(R/K) and Q = spec(R/L). Define an automorphism p of P xs C by
p(a,b) = (a,b+a) (so p (a,b) = (a,b—a)) and let p: P — S be the projection. Then there is a
natural isomorphism

L(p~'(»*Q)) = L/KL = ker(Op+q — Oq).

Moreover, if we have a coordinate x and use it to define a difference function and Thom classes,
then the above isomorphism sends the Thom class in L(p~'(p*Q)) to the element fo € L/KL.

Remark 20.15. In the last part of the statement, it is important that we are using the generator
fo defined as a norm as in Definition 14.3. As explained in Remark 14.4, in the nonequivariant
case, this is different from the Chern polynomial which is more usually used as a generator.

Proof. Write Z for the scheme P x 0 and A for the image of the diagonal map P — P xg P.
Both of these can be regarded as divisors on the multicurve P xg C over P, and it is clear that
p~H(A) = Z, and so p7HA +p*Q) = Z + p~(p*Q). It is also clear that A < p*P and so
A+p*Q < p*(P + Q). There are evident projection maps p*@) — @ and p*(P+ Q) — P+ Q. All
this fits together into the following diagram.

P

p (" Q) — p'Q Q

Z+p (p"Q) —— A+p Q—— p (P+Q) — P+Q

The kernel of the ring map i§ is (essentially by definition) the Thom module L(p~!(p*@)). As pis
an isomorphism, it induces an isomorphism ker(i}) ~ ker(ig). It will thus be enough to show that
the map ker(i3) — ker(if) is also an isomorphism. To be more explicit, write A = Op = R/K
and B = Og = R/L. Let I be the ideal in A ® R = Opy ¢ defining the closed subscheme A, so
I is generated by the images of elements 1® a —a ® 1 for a € R. The right hand half of the above
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diagram then gives the following diagram of rings and ideals:

A®R fo R
i S

A®L L
31 i3

AR f1 R
I.(A®L) KL

AQL L
I(A@L) fa ﬁ

The maps f; have the form a — 1®a, and we must show that f5 is an isomorphism. Now choose a
generator g for the ideal L, giving an isomorphism L ~ R of R-modules. This gives isomorphisms
(A L)/I.(AQL)~(A®R)/I and L/KL ~ R/K = A, in terms of which f; becomes the ring
map A - (A® R)/I givenby a— (a®1+I) = (1®a+ I). This corresponds to the projection
A — B, which is evidently an isomorphism as required. a

Remark 20.16. In the context of Proposition 20.13, we can take P = D(V) and Q = D(W).
We find that D(Hom(T,q*V)) = p~!(¢*P), and the diagram in the proof of Proposition 20.14
can be identified with that in the proof of Proposition 20.13. It follows that the isomorphism
L(p~'(¢*P)) = ker(Op;qg — Op) obtained by applying E°(—) to Proposition 20.13 is the same
as that given by Proposition 20.14.

21. DuALITY

Let D = spf(R/I) be a divisor of degree r on C. In this section we will prove that Homg(Op, Os)
is a free module of rank one over Op, which means that Op is a Poincaré duality algebra over
Ogs. More precisely, we will identify Homg(Op, Og) with a subquotient of the module of mero-
morphic differential forms on C. In the case where C is embeddable, the duality is given by a
kind of residue. It is therefore reasonable to define the residue map in the general case so that
this continues to hold.

21.1. Abstract duality. It will be convenient to start by considering a more abstract situation.
Fix a ground ring &, and write Hom(M, N) for Homy (M, N) and M ® N for M ®; N. Let A be
a k-algebra that is a finitely generated projective module of rank r over k, and write
MY = Hom(M, k) = Homy (M, k)
N* =Homy(N, A).
If M is an A-module, then we make MV an A-module by the usual rule (a¢)(m) = ¢(am).
Now Let I be the kernel of the multiplication map u: A ® A — A, and let J be the annihilator
of Iin A® A, and put B = (A® A)/J. Assume that I and J are both principal.
Given a k-linear map ¢: A — k, we get an A-linear map 1 ® ¢: A® A — A, so we can define
$=6(¢)=(1@¢)s: ]~ A.
This construction gives a map 6p: AV — J*.

Theorem 21.1. The A-modules AV and J are both free of rank one (but without canonical gen-
erator) and the map 0y: AV — J* is an A-linear isomorphism.

The rest of this section constitutes the proof.
Lemma 21.2. The map 0y is A-linear, and the adjoint map 6, : J — A*V is an isomorphism.

Proof. First suppose that a € A and ¢ € AV and u € J; we must show that (1 ® a¢)(u) =
a((1®¢)(u)). From the definitions we have (1®a¢)(u) = (19¢)((1®a)u), and (1®¢)((a®@1)u) =
a((1®¢)(u)), so it will suffice to show that (1®a)u = (a®1)u. This holds because 1®a—a®1 € I
and IJ = 0. We now see that §; is A-linear, which allows us to define the adjoint map 6;: J — A*Y

by 61(u)(¢) = bo(¢)(u) = (1 ® ¢)(w).
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Next, as A is k-projective, we have A® A = Hom(AV, A). If an element v € A ® A corresponds
to amap a: AY — A, then (1 ® a)u corresponds to the map x — aa(z), and (a ® 1)u corresponds
to the map z — a(az). It follows that (1 ® a —a® 1)u =0 iff a(azr) = aa(x) for all x € A. As T
is generated by elements of the form 1 ® a — a ® 1, we find that

AV* = Homy(AY, A) = ann(I,Hom(AY, A)) = ann(I, A® A) = J.
One can check that the isomorphism arising from this argument is just 6. O

Remark 21.3. It follows immediately that if AV has an inverse as an A-module, then that inverse
must be J, and 6y must be an isomorphism.

We now define n9,7m1: A - A® A by
no(a) =a®1
ma) =1®a.
We regard A ® A as an A-algebra (and thus I, J and B as A-modules) via the map 7.

Lemma 21.4. The A-modules I and B are projective, both with rank r — 1. Moreover, J is free
of rank one as an A-module.

Proof. As A is projective over k with rank r, we see that A ® A is projective over A with rank
r. There is a short exact sequence I — A ® A £ A, that is A-linearly split by 7. It follows
that I is projective over A, with rank » — 1. As I is principal with annihilator J, we see that
I~(A® A)/J = B as A-modules, so B is also projective of rank r — 1. It follows that the short
exact sequence J -+ A® A — B is A-linearly split, and so J is projective of rank one. It is also a
principal ideal and thus a cyclic module, so it must in fact be free of rank one. |

Next, write A! for the ¢’th exterior power functor, and observe that n; induces a k-linear map
A ATTTA S AR NTTA =N HA® A),

and the projection ¢: A ® A — B induces a map A" '(g): Ay 1(A ® A) — X, 'B. We define
Y ATTIA - /\Zle to be the composite of these two maps.

Lemma 21.5. The map ¢: \"~*A — X' B is an isomorphism.

Proof. One can see from the definitions that the image of ¥ generates )\Z‘_IB as an A-module. We
will start by showing that the image is itself an A-submodule, so ¢ must be surjective.

First, we show that A"~! A has a natural structure as an A-module. Indeed, there is an evident
multiplication v: A ® A" A — A" A, which induces an isomorphism v#: \""1 4 ~ Hom(4, A" A).
The A-module structure on A gives an A-module structure on Hom(A, \"A) which can thus be
transported to A" ! A. More explicitly, there is a unique bilinear operation *: AQA" 14 — \"1A4
such that a A (b*u) = (ab) Au for all a,b € A and u € A" 1A

This in turn gives an A ® A-module structure on the group A® A" 14 = ;' (A ® A), by the
formula (a ® b) * (¢ ® u) = (ac) ® (b *u). It follows that

71 (b * u) = n1 (D) * 71 (u).
We next claim that A’y ' B is a quotient A ® A-module of A", ' (4 ® A), and is annihilated by
I. Indeed, we certainly have an A-module structure and (A ® A)/I = A so it will suffice to show
that the map \"~*(g): Ay '(A® A) — X, ' B annihilates I X"y !(4 ® A). To see this, choose an
element e that generates J (so Ie = 0). Using the splittable exact sequence J - A® A 4 B, we
see that there is a commutative diagram as follows, in which x is an isomorphism.
en(—)

NN Ae4) T a4 4)

X
A" (g) o

AT'B

Now for u € N} ' (A ® A) we have e A (I xu) = (Ie) Au =0, s0 A"~ (q)(I *u) = 0 as required.

We can now apply the map A"~ !(q) to the equation 7; (b * u) = m(b) * A1 (u) to see that our
map ¢: \"1A = )\’"A_lB is A-linear. In particular, the image of 1) is an A-submodule, and thus
1) is surjective as explained previously.
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Next, note that A is a projective k-module of rank r, so the same is true of A" "' A. On the
other hand, B is a projective A-module of rank r» — 1, so )\Q_IB is a projective A-module of rank
one, and thus also a projective k-module of rank . Thus 9 is a surjective map between projective
k-modules of the same finite rank, so it is necessarily an isomorphism. d

Example 21.6. It is illuminating to see how this works out in the case where A = k[z]/f(z),
where f(z) = Y°_,a;z"~¢ is a monic polynomial of degree r. We write zo for z ® 1 and z; for
1®z,s0 A® A= k[zo,z1]/(f(z0), f(z1)). Put

d(zo, 1) = 11 — T

e(zo,z1) = (f(z1) — f(m0))/ (21 — o) = D ar_i_j1zhai.
i+j<r
One checks that [ is generated by d and J is generated by e. Put
ui= (=12 A.. . AT A...Az"L,

so {ug, . .., ur—1}is a basis for \" 1 4 over k. If we put v = 20A.. .Az" ! € A" 4, then 2 Au; = §;;v,
50 &} A (u;) = 6;57 (v). Using this, we find that

xb(ug) = e Ain(ug) = (3 as_sz™ )i (v).
1=k

This means that the matrix of the map xi: ™ '4 — )\ (A ® A) (with respect to the obvious
bases) is triangular, with ones on the diagonal. The map x% is thus an isomorphism, and the
same is true of x, so ¥ is an isomorphism as expected.

Proof of Theorem 21.1. First, suppose we have a map ¢: A — k. It is well-known that there is a

unique derivation i, of the exterior algebra A*A whose effect on A' 4 is just the map \'A = 4 2,
k = XA (this is called interior multiplication by ¢). We write ((¢) for the map i4: A\TA — A" 1 A.
This construction gives a map ¢: AY — Hom(\" A, X"~ A). If we have a basis for A then we find
that ¢ sends the obvious basis of AV to the obvious basis for Hom(A\" A, \""1A4) (up to sign),
so ( is an isomorphism. In general, A need only be projective over k but we can still choose a
basis Zariski-locally on spec(k) and the argument goes through. It follows that ¢ is always an
isomorphism.

Next, as mentioned above, the short exact sequence J - A ® A — B gives J @4 )\TA*IB =
M (A® A) = A® A\"A. As the modules J, A, ' B and A ® A" A are all dualisable, we deduce that

J*=Homs(A® A\"A, )\Q_IB)
= Hom(A\"A, X' B)
= Hom(\" 4, \" "1 A)
=AV.

In particular, we see that AV is an invertible A-module, so Remark 21.3 tells us that the map
6o must be an isomorphism. (In fact, the above chain of identifications implicitly constructs an
isomorphism 6§: AV — J*, and one could presumably check directly that 6 = 6o, but we have
not done s0.) O

Definition 21.7. The isomorphism J* = AV gives J*V = AYY = A4; we let €: J* — k be the
element of J*V corresponding to 1 € A under this isomorphism. Equivalently, € is the unique map
such that €(6p(4)) = (1 ® @)|s) = ¢(1) for all ¢ € AV.

We will prove later that in cases arising from topology, the map € can be identified with a Gysin
map. We conclude this section with an algebraic characterisation of € that will be the basis of the
proof.

Construction 21.8. Given A\ € J* and a € A we can define a map m(a® \): J - A® A by
e — a®A(e). This map is A-linear if we use the second copy of A to make A® A into an A-module.
Thus, this construction gives a map m: A ® J* — Homy4(J, A ® A), and as A is projective over
k, this is easily seen to be an isomorphism. Under the inverse of this isomorphism, the inclusion
J = A ® A corresponds to an element u € A ® J*. Lemma 21.11 will give a more concrete
description of this element.
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Proposition 21.9. The map e: J* — k is such that (1 ® €)(u) = 1 (where u is as constructed
above). Moreover, € is the unique map with this property.

The proof will follow after some discussion.
It is convenient to choose a generator e = ). a; ® b; for J, and a dual generator 7 for J*, so
n(e) = 1. We then put ¢ = 65" (n) € AV; this is the unique map 1/: A — k such that (1®)(e) =

Lemma 21.10. We have ¥(a) = €(an) for all a € A.
Proof. Using the A-linearity of §y and the fact that ey(¢) = ¢(1), we see that
e(an) = efo(a)) = (ay)(1) = ¢¥(a).

Lemma 21.11. The element u in Construction 21.8 is given by

u=e(l®n) = Za,@bm

Proof. The element v := e.(1 ® ) corresponds to the map ¢ = m(v): J — A ® A given by
i(x) = >, a; ® bin(x). In particular, we have i(e) = > ,a; ® b; = e, so i is the inclusion, so
v =u. a

Proof of Proposition 21.9. Recall that € is the image of 1 under an isomorphism A ~ AVY ~ J*V,

so it certainly generates J*V. It will thus suffice to check that (1 ® (te))(u) =t for all t € A. The
calculation is as follows:

(1® (te)) Za,e thin)

= Z a;(th;)

=(1ey)((1ete)
=1y ((tele)

=t.(1ey)(e)
=t.

The first equality is Lemma 21.11, and the second is Lemma 21.10. The fourth equality holds
because (1 ® t)e = (t ® 1)e, and the last equality is essentially the definition of 1. O

21.2. Duality for divisors. Now consider a divisor D = spec(A) on a multicurve C' = spf(R)
over a scheme S = spec(k). In this section, we explain and prove the following theorem.

Theorem 21.12. For any divisor D = spec(O¢/Ip), there is a natural isomorphism
Home,(Op,Og) = (IBI/Oc) ®oc (L.

(The right hand side consists of meromorphic differential forms whose polar divisor is less than
or equal to D, modulo holomorphic differential forms; it is easily seen to be free of rank one over
Op.) Moreover, if a map ¢: Op — Og corresponds to a meromorphic form u, then ¢(1) = res(u).

The proof is postponed to the end of the section. The last part of the theorem is not yet
meaningful, as we have not defined residues. The definition will be such as to make the claim
trivial, but we will also check that the definition is compatible with the usual one in the case of
embeddable multicurves.

The first step in proving the theorem is to show that the theory in the previous section is
applicable.

Definition 21.13. Let X be a scheme over S, with closed subschemes Y and Z. Suppose that
Ox, Oy and Oy are all finitely generated projective modules over Og. We say that Y and Z are
perfectly complementary if

(a) the ideals Iy and I are principal.
(b) ann(Iy) = Iz and ann(Iz) = Iy.

Lemma 21.14. If Dy and Dy are divisors on a multicurve C, then Do and D, are perfectly
complementary in Dy + D;.
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Proof. Put A; = Op,; this is a finitely generated projective module over Og, and has the form
Oc¢/ fi for some regular element f; € Oc. We also put B = Oc¢/(fof1) = Opy+p,, S0 A; = B/ fi.

Suppose that gfi = 0 (mod fof1). Then (9 — hfo)fi = 0 for some h € O¢, but f; is regular,
s0 g = hfo = 0 (mod fo). This shows that the annihilator of f; in B is generated by fo, and by
symmetry, the annihilator of fy is generated by fi, and this proves the lemma. O

Corollary 21.15. Let D be a divisor on a multicurve C. Then the diagonal subscheme A C
D xg D and the subscheme P,D C D xg D are perfectly complementary.

Proof. Let q: D — S be the projection. We can regard A and P> D as divisors on the multicurve
q*C over D, with D xg D = q¢*D = A + P, D, so the claim follows from the lemma. O

Corollary 21.16. Let D be a divisor on a multicurve C, and put J = ker(Op2 — Op,p). Then
J is a free Op-module of rank one, and there is a natural isomorphism

0o : HOIn(')D (J, OD) — Homos (OD, 05)
given by 6o(¢) = (L® )|,

Proof. Let I be the kernel of the multiplication map Op2 = 0%2 — Op, so that Oa = Op2/I.
Note that I is principal, generated by any difference function on C'. We see from Corollary 21.15
that J is the annihilator of I, and that J is also principal. We can thus apply Theorem 21.1 to
get the claimed isomorphism. a

To proceed further, we need a better understanding of the ideal J.

Definition 21.17. For the rest of this section, we will use the following notation.

k=0g
R=0¢
A:OD
R; = R®R
Ay =ARA

I =ker(R, % R)
I =ker(4; & A)
J = anna,(I)
K = Ip = ker(R — A)
Ky = KQR + RIK = ker(Ry — A»)
J ={u€ Ry |ul C Ky}.

We will also choose a difference function d on C' (so d € I), and let a denote the image of d
in Q. We choose a generator f of K, and we let e denote the unique element of Ry such that
1® f— f®1=de. We will check later that the image of e in A, is a generator of J. After that,
we will write 7 for the dual generator of J*, and 1 for the corresponding element of AV.

Remark 21.18. Tt is clear that J is the preimage of J in Ry, so J = J /K. As Tis generated by
a single regular element, one can check that I'N K, = 1.J.

Definition 21.19. We define xo: R — I by xo(a) =1 ®a — a® 1, and observe that
xo(ab) = (a ® 1)xo(d) + (1 ® b)xo(a)-

Given a difference function d on C, we let £(a) € Ry denote the unique element such that yo(a) =
&(a)d. We again have

£(ab) = (a ©1)¢(b) + (1 ® b)¢(a).
Lemma 21.20. There is a unique map v: Ko — K/K? such that
v(a ® b) = ab whenever a € K andb € R
v(a ® b) = 0 whenever a € R and b € K.

Moreover, we have v(KoI) = 0.
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Proof. Using a k-linear splitting of the sequence K — R — A, we see that (K®R) N (RRK) =
K®K, so we have
K, KG®R
R®K K&K’
The multiplication map p: R®R — R evidently induces a map (K®R)/(K®K) — K/K2.
Putting this together, we get a map

REK Kok = K2

It is clear that this is uniquely characterised by the stated properties. As v is essentially given
by p on K&R and p(I) = 0, we see that v(I.(K®R)) = 0. We also have v(R®K) = 0 and so
v(I.(R®K)) =0, so v(IK5) = 0 as claimed. O

K. K®R K
V:<K2—> 2 - ® a )

Proposition 21.21. The map ¢ induces a A-linear isomorphism K/K? — J, so J is freely
generated over A by the element e = £(f). (Note however that this isomorphism is not canonical,
because it depends on the choice of d.)

Proof. Suppose that a € K, so xo(a) € Ka. As I = Ryd we see that f(a)f = Raxo(a) C I, so
E(K) C J, so we get an induced map K — J, /K> = J. Using the product formula for £, we deduce
that this map is R-linear and induces a map K/K? — J. In the opposite direction, we define
¢:J = K/K? by ((u) = v(ud). If u € K then ud € IK, so v(ud) = 0. Thus, ¢ induces a map
J=J/K, - K/K?. Tt is easy to see that (£ = 1: K/K? — K/K2, and both J and K/K? are
invertible A-modules, so ¢ and £ must be mutually inverse isomorphisms. It follows immediately
that J is freely generated by e. |

Our next task is to reformulate the above isomorphism in a way that is independent of any
choices.

Proposition 21.22. Put

O=Qlp =00 A=1®g, A
There is a natural isomorphism x: K/K? — J®g Q = J ®a Q of A-modules, satisfying x(a) =
&(a) ® a, where a is the image of d in Q. By adjunction, there is also a natural isomorphism
X': = (K/K?)* @4 Q = (K/K*)* @ Q.

Proof. We have
Joa0=J@4 (A®r, I) = (J/K2) ®r, I = I)/(IK,) = (IN K,)/(IK>).

We have seen that the map x sends K to INK, and K2 to ng, so it induces a map x: K/K? —
J ®4 Q, which is obviously canonical. One checks from the definitions that x(a) = £(a) ® a, where
¢ and « are defined in terms of a difference function d as above. As ¢ is an isomorphism and (0 is
freely generated by a over A, we conclude that x is an isomorphism. |

Our next task is to interpret the module (K/K?)*.

Definition 21.23. Let C be a formal multicurve over S. We say that an element f € O¢ is
divisorial if it is not a zero-divisor, and O¢/f is a projective Og-module of finite rank. One can
check that the set of divisorial elements is closed under multiplication, so we can invert it to get
a new ring M, whose elements we call meromorphic functions. We say that a meromorphic
function is divisorial if it can be written as f/g, where f and g are divisorial elements of O¢ (this
can be seen to be compatible with the previous definition). A fractional ideal is an Oc-submodule
I < M that can be generated by a divisorial meromorphic function. The set of fractional ideals
forms a group under multiplication, with I=1 = {f € M¢ | fI C O¢}.

Lemma 21.24. There is a natural isomorphism (K/K?)* = (K~!/R). With respect to this, the
generator f of K/K? is dual to the generator 1/f of K=!/R.

Proof. The multiplication map K&z K~' — R induces a map (K/K?) ®4 (K~'/R) — A, and
thus a map K—1/R — (K/K?)*. This is easily seen to be an isomorphism. The statement about
generators is clear. O

Proof of Theorem 21.12. Everything except the last part now follows immediately from Corol-
lary 21.16, Proposition 21.22 and Lemma 21.24. The residue map will be defined in Defini-
tion 21.31, and then the last part of the theorem will be true by definition. O
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We can make the theorem more explicit as follows.

Proposition 21.25. The natural isomorphism
AV 2y X g URe, 0
sends ¢ to the element ((1 ® ¢)(e))/f @ a.

Proof. Using Proposition 21.21, we see that e generates J, so there is a unique element n € J*
with n(e) = 1. The natural isomorphism K/K? — J ®4 Q sends f to e ® a, so the adjoint map
X':J*—= K '/R®Qsends 5 to 1/f ® a, and thus sends an to (a/f) ® a. Next, we certainly have
0o(¢) = an for some a € A, and by evaluating this equation on e we find that a = (1 ® ¢)(e). It
follows that

X'00(¢) = (a/f)®@a= (1 ¢)(e))/f ®

as claimed. 0

We next examine how this works in the case where C' is embeddable, say C' = spf(k[x]fg)) for

some monic polynomial g. We then have K = Rf for some monic polynomial f that divides some
power of g, and A = R/K = k[z]/f.

Definition 21.26. Suppose we have a ring k and an expression o = f(z)dz = p(z)dz/q(z),
where p and ¢ are polynomials with ¢ monic; we then define the residue res(a) as follows. Let R’
denote the ring of series of the form u(z) = Engoo anz™ for some finite N. Clearly k[z] C R'.
Moreover, if g(z) is a monic polynomial then we can write ¢(x) = z™r(1/z) for some polynomial
r(t) with r(0) = 1. It follows that r(1/z) is invertible in R', and thus the same is true of g(z), so
we can expand out f(z) = p(z)/q(z) as an element of R', say f(z) = 3N z™. We then put

n=—oo an
res(a) = a_1.
Remark 21.27. In the case k¥ = C, one can check that res(a) is the sum of the residues of «

at all its poles, so the integral of a around any sufficiently large circle is 2mires(a). By standard
arguments, most formulae that hold when k& = C will be valid for all k. In particular, we have

o res(f(z)dz) = 0if f is a polynomial
o res(f'(z)dz) = 0 for any f = p/q as above
o res(f'(z)dz/f(x)) = deg(p) — deg(q) if f = p/q for some monic polynomials p and gq.

Lemma 21.28. Suppose that f(x) = p(z)/q(x) where q is monic of degree n, and

p(z) = i biz'  (mod ¢(z)).

Then res(f(z)dz) = b, ;.

Proof. First, put m(z) = Z?;()l b;xt, so p(z) = m(x)+I(z)q(x) for some polynomial I(z), so f(x) =
m(z)/q(x)+I(z). We haveres(l(z)dx) = 0, so it will suffice to show that res(m(z)/q(z)dz) = b, _1.

Next, write g(z) = z"r(1/z) as in the definition, and put u(z) = 1/r(1/z), so u(z) =
Z;’io a;z~" for some coefficients a; € k with ag = 1. We have

2/ [q(z) = 27 "u(z) = Zaiwj_"_i:

i>0
)
; if 0<j -1
res(elda/g(@) = ) L OST<T
1 ifj=n-1.
The claim follows immediately. |

Proposition 21.29. If A = k[z]/f(x), then the map
(K YR o0 X, S g

is just the residue.
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Proof. As in example 21.6, we put

T
= E a;z" "
=0

d(zo,21) = 21 — 20
a=dz €

e(o,21) = (f(z1) — f(20))/(z1 —20) = D ar i j 1742
+ji<r
This is of course compatible with the notation in Proposition 21.25, 50 x'0(¢) = (106)(e)dz/ f(z).
The map € is characterised by the fact that €(6o(¢)) = ¢(1), so it will suffice to check that

res((1 ® ¢)(e)dz/f(z)) = ¢(1) for all ¢ € AV.
Now let {Co,---,(r_1} be the basis for AV dual to the basis {z°,..., 271} for A. We then have
(1® ¢;)(z¥) = 1, and it follows that

r—1—j

®CJ Za’f"t]lx

Using Lemma 21.28 we deduce that res((1 ® (;)(e)dz/f(z)) = 0 for j > 0, whereas for j = 0 we
get ag, which is 1 because the polynomial f(z) = -, ;_, ajz’ is monic. On the other hand, we
also have (;(1) = dg; by definition, so res((1 ® ¢;)(e )dx/f( )) = ¢;(1) as required. O

Given this, it would be reasonable to define residues on multicurves using the maps €. To make
this work properly, we need to check that these maps are compatible for different divisors.

Proposition 21.30. Suppose we have divisors Do C D1, corresponding to ideals K; < Ky < R.
Let j: K;'/R — K;'/R be the evident inclusion, and let ¢: A; = R/K; — R/Ky = Ay be the
projection. Define §;: AY — k by 6;(¢) = #(1). Then the following diagram commutes:

do

‘6
k Ay 225 KU /Re
v -1
k o1 Af X0 K" /ReQ

Proof. As ¢(1) = 1, it is clear that the left hand square commutes. For the right hand square,
choose generators f; for K; and put e; = £(f;), so that

X'00(¢) = 1® ¢)(e:)/ fi ®
for ¢ € AY.
As Dy C Dy, we have f; = gfo for some g, and so £(f1) = (9 ® 1)&(fo) + (1 ® fo)é(g), or in
other words e; = (9 ® 1)eg + (1 ® fo)&(9).
Now suppose we have ¢ € Ay, so (¢*¢)(fo) =0, so (1 ® ¢*¢)((1 ® fo)é(g9)) = 0. We then have

X'00q"(¢) = (1@ ¢ d)(e1)/fr) ® a
= (9(1 ® ¢)(e0))/(9f0) ® a
=(1®¢)(e0)/fo®
= jX'60(4)

as claimed. 0

Definition 21.31. Define §: Homp,(Op,Og) = Og by §(¢) = ¢(1). We let res: M¢ ®o, 2 —
Os be the unique map whose restriction to Iz_)l ®o (2 is the composite

IBI Roc 0= (IBI/Oc) Qoo 0~ HOI’II(')S (OD, 05) i) Og.

(This is well-defined, by Proposition 21.30, and compatible with the classical definition, by Propo-
sition 21.29.)

Proposition 21.32. For any g, f € Oc, if f is divisorial than
res((g/ f)df) = trace(og /1) /05 (9)-
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In particular, we have res((1/f)df) = dimog (Oc/f). Moreover, we also have

res(d(g/f)) = res (M) =0.

Proof. Both facts are well-known for residues in the classical sense, so they hold whenever C' is
embeddable. Using Corollary 15.3, we deduce that they hold for a general multicurve C. We will
give a more direct and illuminating proof for the first fact; we have not been able to find one for
the second fact.

We use abbreviated notation as before, with K = Rf so that A = R/f. The multiplication
map p: As — A restricts to give an A-linear map u: J — A, or in other words an element of J*.
The trace map 7: A — k can be regarded as an element of AY. We claim that the elements 7, u
and (df)/f correspond to each other under our standard isomorphisms

AV~ J*~(K7'/R)® Q.

To see this, note that (1 ® 7)(u) = tracey, 4(u) for all u € A;. Using the splittable short exact
sequence
I A5 A,
we see that
(1®7)(u) = trace(I =5 I) + p(u).
If u € J then multiplication by u is zero on I and we deduce that (1 ® 7)(u) = p(u). This shows
that 69(7) = p as claimed.

Next, let e = £(f) be the standard generator of J, and let 1 be the dual generator of J*, so
n(e) = 1. Using Proposition 21.25, we see that p corresponds to the element (u(e)/f) ® a =
(1/f) ® (u(e)a) in (K~1/R) ® Q. Now, the module Q = I/I? is originally a module over R, that
happens to be annihilated by ker(u) = I , and so is regarded as a module over R via p. Thus,
pu(e)a is just the same as ea. Moreover, « is just the image of d in €, so e« is the image of
ed=¢&(f)d=1® f — f ®1, and this image is by definition just df. Thus, u € J* corresponds to
(1/f) ® df as claimed.

As the isomorphism A* — (K~1/R) ® Q is A-linear, we see that g7 maps to (g/f)df, so

res((g/f)df) = (g7)(1) = 7(9),

as claimed. 0

Remark 21.33. It is useful and interesting to reconcile this result with [16, Proposition 9.2].
There we have a p-divisible formal group C = spf (R) of height n over a formal scheme S = spf(k),
where k is a complete local Noetherian ring of residue characteristic p, and we will assume for
simplicity that k is torsion-free. Fix m > 1 and let : C — C be p™ times the identity map. In
this context the subgroup scheme D := C [p™] = ker(v)) is a divisor of degree p™™, so the ring Op
is self-dual (with a twist) as before. Given any coordinate z, we note that Op = R/¢*z, so the
meromorphic form a = D(z)/(¢* ) is a generator of the twisting module (K ~!/R) ® Q. We claim
that a is actually independent of z. Indeed, any other coordinate z' has the form z' = (z + 22q)u
for some u € k* and ¢ € R. It follows that do(z') = udo(z), so that D(z') = uD(z). We
also have 9*(z') = uy*(z) (mod 9*(z)?), and it follows that *(z')"! = u 1¢*(z) ! (mod R),
so D(z')/¢*(2") = D(z)/v¥*(z) mod holomorphic forms, as claimed. Thus, we have a canonical
generator for (K~!/R) ® Q and thus a canonical generator for AV, giving a Frobenius form on
Op. The cited proposition says that this is the same as the Frobenius form coming from a transfer
construction. As discussed in the preamble to that proposition, p™ times the transfer form is the
same as the trace form. In view of Proposition 21.32, this means that p™a = d(¢*z)/(¢*z). In
fact, this is easy to see directly. We know that D(z) generates Q and agrees with d(z) at zero, so
d(z) = (1 4+ 2r)D(z) for some function r € R. It follows that

d(@*z) = ¢*(d(z)) = (1 + ¢*(2)9" (r)¢" (D(2)).
As D(z) isinvariant we have ¢*D(z) = p™D(x). It follows that d(¢*z)/(v*z) = p™D(z)/(v*x) =
pmain (K~'/R) ® Q, as claimed.
Remark 21.34. It should be possible to connect our treatment of residues with that of Tate [19].

However, Tate assumes that the ground ring k is a field, and it seems technically awkward to
remove this hypothesis.
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21.3. Topological duality. Consider a periodically orientable theory E, an A-space X, and an
equivariant complex bundle V' over X. To avoid some minor technicalities, we will assume that
X is a finite A-CW complex; everything can be generalised to the infinite case by passage to
(co)limits. Let C be the multicurve spf(E°(PU x X)) over S := spec(E°X). We then have a
divisor D = D(V) on C, to which we can apply all the machinery in the previous section. In
particular, this gives us a residue map

res: (IBI/OC) ®oe 2 — Os.

On the other hand, if we let 7 denote the tangent bundle along the fibres of PV, then there is a
stable Pontrjagin-Thom collapse map X, — PV ™7, giving a Gysin map

p: E°PV™" = E°X = 0.

Theorem 21.35. There is a natural isomorphism ECPV T = (I5'/0c) ®o, Q, which identifies
the Gysin map with the residue map.

This is an equivariant generalisation of a result stated by Quillen in [14]. Even in the nonequiv-
ariant case, we believe that there is no published proof. The rest of this section constitutes the
proof of our generalisation. (The case of nonequivariant ordinary cohomology is easy, and is a
special case of the result proved in [6].)

We retain our previous notation for rings, and write P2V = PV xx PV, so

k=0g=E’X
R=0¢ = E°(PU x X)
A=0p=E(PV)
Ry = R®R = E°(PU x PU x X)
Ay = A® A= E°(P?V).

Next, observe that P,V is a subspace of P2V, and Proposition 20.10 tells us that EOP,V =
Op,p = A2/J, so J = E°(P?V,P,V). On the other hand, there is another natural description
of E°(P2V, P,V), which we now discuss. Let T be the tautological bundle on PV, consider the
vector bundles T+ = V & T and U = Hom(T,T"), and let B°U denote the open unit ball bundle
in U. A point in B°U is a triple (z,L,a) where z € X and L € PV, and a: L — V, © L,
such that [|a(u)|| < ||u|| for all w € L\ {0}. We can thus consider graph(a) and graph(—a) as
one-dimensional subspaces of L x (V, © L) = V,,, or in other words points of PV,, so we have a
map &' : B°U — P%V given by

§'(z,L,a) = (graph(e), graph(—a)).
Proposition 21.36. The map &' is a diffeomorphism B°U — P2V \ BV

Proof. First, we must show that ¢'(z, L, a) ¢ P,V or in other words that graph(«) is not perpen-
dicular to graph(—«). For this, we choose a nonzero element u € L, so vo = u + a(u) € graph(a)
and v; = u — a(u) € graph(—a). It follows that {vo,v1) = ||ul|? — ||a(u)||?; this is strictly pos-
itive because ||a]| < 1, so the lines are not orthogonal, as required. We therefore have a map
§': B°U — P2V \ R,V

Any element of P?V \ P,V has the form (z, My, M1) where z € X and My, M; € PV, and M,
is not orthogonal to M;. This means that we can choose elements u; € M; with ||u;|| = 1 and
such that ¢ := (ug,u1) is a positive real number. One checks that the pair (ug,u;) is unique up to
the diagonal action of S'. Put v = ug + u; and w = ug — u;. By Cauchy-Schwartz we have t < 1,
and by direct expansion we have

(v,w) =0

(v,0) =2(141)>0

(w,w) =2(1 —t) < (v,v).
We can thus put L = Cv € PV, and define a: L — L' by a(zv) = zw; these are clearly
independent of the choice of pair (ug,u;). As ||w|| < ||v|| we have ||la|| < 1. As v+ a(v) = 2ug
we have graph(a) = M)y, and as v — a(v) = 2u; we have graph(—a) = M;. It follows that the
construction (z, My, M1) — (z, L, @) gives a well-defined map (: P?V\ RV — B°U, with §'¢ = 1.
One can check directly that (&' is also the identity, so §' is a diffeomorphism as claimed. |
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Corollary 21.37. The bundle U is the normal bundle to the diagonal embedding 6: PV — P2V,
there is a homeomorphism P?V/P,V = PVV, and the quotient map P2V — P2?V/P,V can be
thought of as the Pontrjagin-Thom collapse associated to §. |

Remark 21.38. There are easier proofs of this corollary if one is willing to be less symmetrical.
Now, the above corollary together with Proposition 21.22 and Section 3 gives
E°PVY = EO(P?V,RV)=J=K/K*®4Q = K/K? @, w".
On the other hand, we have
U = Hom(T,T*) = Hom(T,p*V) ©C,
so (using the case W =V of Proposition 20.13)
PVY =y 2pyHem(Tr™V) — =2 p(V ¢ V) / PV.

Remark 5.9 tells us that E°(S~2) = wV, and it is clear that E°(P(V & V),PV) = K/K?2. We
thus obtain N

E°PVY = K/K? @, w
again. These two arguments apparently give two different isomorphisms ECPVU — K/K2 @ w",
but one can show (using Remark 20.16) that they are actually the same.

We next recall some ideas about Gysin maps. We discuss the situation for manifolds, and
leave it to the reader to check that everything works fibrewise for bundles of manifolds, at least
in sufficient generality for the arguments below. Let f: M — N be an analytic map between
compact complex manifolds. (It is possible to work with much less rigid data, but we shall not
need to do so.) Let 7as and 7x; be the tangent bundles of M and N, and let vy be the virtual
bundle f*rn — 7as over M. Then for any virtual bundle U over N, a well-known variant of the
Pontrjagin-Thom construction gives a stable map T(f,U): NV — M7'U+¥s and thus a map
fi = T(f,U)*: EOMFU+vs — EONU. Using the ring map f*: E°N — E°M we regard the
source and target of T'(f,U)* as E° N-modules, and we find that T'(f,U)* is E° N-linear. We also
find that T'(f,U)* can be obtained from T'(f,0)* by tensoring over E°N with E°NV. Finally, we

have a composition formula: given maps M LN P, we have v,y = vy + f*v, and
T(f,v5) 2 T(9,0) = T(gf,0): P¥" — M@D"VHvor,

Now consider the maps M LN VIR Y , where 7 is the constant map from M to a point.
We have vs = 7y and v, = —7yy, so the transitivity formula says that the composite

1AT (w,0) T(6,v1xx)
E— —

M
is the identity. Assuming a Kiinneth isomorphism, we get maps
E°M %% BOM ® EOM—T 127 B0,
whose composite is again the identity. _
Now specialise to the case M = PV. As before we put A = E°PV and identify E°M7™ with J,

and the map & = T'(8,0)*: E°M™ — E°(M?) with the inclusion J - A ® A. We know that the
map

My AM™" M,

8 =TS8, vixn)": A= E°M - E°M @ E°M ™" = A® J*
is obtained from T'(,0)* by tensoring over A ® A with A ® J*. It follows easily that & (1) =
u € A® J*, where u is as in Construction 21.8. The equation (1 ® m)d& = 1 now tells us that
(1 ® m)(u) = 1. Proposition 21.9 now tells us that m = e: J* — k. This proves Theorem 21.35.

22. FURTHER THEORY OF INFINITE GRASSMANNIANS

Recall from Section 19 that GU denotes the space of finite-dimensional subspaces of ¢/, which
is the natural equivariant generalization of the space GC® = [[,;, BU(d). We know from The-
orem 19.1 that EqGU is the symmetric algebra over E, generated by EqPU = O). It follows
that

spec(EoGU) = Map(C, A)
spf(E°GU) = Div} (C).

In this section, we obtain similar results for spaces analogous to Z x BU, BU and BSU.
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Definition 22.1. For any finite-dimensional A-universe U, we put 2U = U @ U. We write U,
for U@ O0and U_ for 0@ U so 2U = U4 + U_. We put
2 dim(U)

GU)=G@2U)= ][] Gav);
d=0

a point X € é(U ) should be thought of as a representative of the virtual vector space X — U_.
We embed G(U) in G(U) by X = X & U = X4 + U_. We define dim: G(U) — Z by dim(X) =
dim(X) — dim(U), and G4(U) = {X | dim(X) = d}. Given an isometric embedding j: U = V,
we define j,: G(U) = G(V) by j.(X) = (j ® j)(X) + W_, where W = V © j(U). There
is an evident map o: G(U) x G(V) — G(U ® V) sending (X,Y) to X ® Y; one checks that
dim(X ®Y) = dim(X) + dim(Y) and that the map o is compatible in an obvious sense with the
maps jx.

If U is an infinite A-universe, we define 2U = U & U as before, and put G(U) = h—H>1Ué ),

where U runs over finite-dimensional subspaces. Equivalently, G(I) is the space of subuniverses
VY < 2U such that the space VNU_ has finite codimension in V' and also has finite codimension in
U_. This is a natural analogue of the space Z x BU.

Proposition 22.2. For any B < A we have
Gu? = T Guis) =Map(5*, ][] BU(d))

BEB* d
(Gu)? = [ GWIp)) =Map(B*,Z x BU)
BEB*

where

U[B] = {u | b.u = exp(2miB(b))u for all b € B}
is the B-isotypical part of U. In each case, the first equivalence is A/B-equivariant, but the second
18 not.

Proof. For the first isomorphism, just note that U splits A-equivariantly as @ sU [8], and a sub-
space V < U is B-invariant iff it is the direct sum of its intersections with the subspaces U[3].
This gives an A/B-equivariant isomorphism (GU)® =[], GU[B]), and it is clear that G(U[A]) is
nonequivariantly a copy of [[, BU(d) so (GU)® = Map(B*, ], BU(d)). The argment for (GU)B
is essentially the same. O

We next write Rt A = N[4*] = 7§'(GU) for the additive semigroup of honest representations
of A, and RA = Z[A*] = n§ (GU) for the additive group of virtual representations. It is clear
that the semigroup ring Fo[R* A] is a polynomial algebra over Eq with one generator u, for each
character a, and the group ring Eo[RA] is the Laurent series ring with the same generators. In
other words, we have

Eo[RYA] = Eolug | a € A¥]
Eo[RA] = Eo[ug,uy" | a € A*] = Ey[RT A][v™]
where v =[], uq. Note that
spec(Eo[R* A]) = Map(A4*, A')
spec(Ep[RA]) = Map(A4*,Gy,),
and the isomorphisms R*A = nlGU and RA = nlGU give maps FEo[RtA] — E,GU and

Now let ¢ be the obvious isomorphism

ClA] o U = C[4] & C4]* — C[A4]* =U,
and define ¢': Gald = G 41144 by ¢'(X) = ¢(C[4] & X).
Proposition 22.3. The space GU is the telescope of the self-map ¢' of GU. We thus have
EoGU = v EyGU = Bo[RA] @ gy r+4) EoGU,
and so spec(EoGU) = Map(C, Gp,).
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Proof. Put U' = C[A][z,27!], and identify this with 2/ by sending (ex,0) to 2¥ and (0,e) to

z:k’l. The standard embedding GU — GU now sends X to X @ U_. It is easy to check that

GU = lim 2~*GU on the nose, and that the inclusion z~*GU — z—*~1GU is isomorphic to the
k

map ¢'. The first claim follows, and the second claim is just the obvious consequence in homology.

The tensor product description of EqgGU gives us a pullback square

spec(EoGU) spec(EoGU) = Map(C, A)

Map(A*, Gy, ) = spec(Eo[RA]) —— spec(Eo[R'A]) = Map(A4*, A').

As C' is a formal neighbourhood of the image of ¢, we see that a map C' 5 A1 lands in Gy, if

and only if the composite A* x § 2 ¢ L Al lands in Gy, - Given this, we see that the pullback
is just Map(C, Gy,) as required. ]

We next introduce the analogue of BU.

Proposition 22.4. There is a natural splitting GU = Z x G‘ou, and we have spec(Eoé'OZ,{) =
Map,(C, Gy,) (the scheme of maps f: C — Gy, with f(0) =1).

Proof. We have already described an equivariant map dim: GU — Z, and defined éou = ker(ai?n).
We also have (GU)A = Map(A*,Z x BU) so 77()4(62,{) = Map(A*,Z) = RA, which gives an
equivariant map i: RA — GU (where RA has trivial action). The composite dimoi: RA = Z is
just the usual augmentation map e sending a virtual representation to its dimension. Thus, if we
let n: Z — RA be the unit map, then ;o7 is a section of dim. As GU is a commutative equivariant
H-space, we can define a map &: GU — Gold by = — (i(n(dim(z))) — z), and we find that the
resulting map (dfl\r/n, d): GU = 7 x Goll is an equivalence. This is easily seen to be parallel to the
splitting Map(C, G, ) = Gy, x Mapy(C, Gy, ) given by f +— (f(0), f(0)/f), which gives the claimed
description of spec(EoGU). O

Remark 22.5. There are two other possible analogues of BU. Firstly, one could take the colimit
of the spaces G4l using the maps V — V @ C; the scheme associated to the corresponding space
is then Map,(C, A!), which classifies maps f: C — Al with f(0) = 1. Alternatively, one could
take the colimit of the spaces G 44U using the maps V +— V @ C[A]. This gives the scheme of
maps f: C' = Gy, for which [],c4. f(¢#(a)) = 1. However, the space Gold described above is the
one that occurs in Greenlees’s definition of the spectrum kU4, and is also the one whose Thom
spectrum is MU 4.

We next introduce the analogue of BSU. For this, we need an analogue of the map B det: BU —
CP.
Definition 22.6. Given a universe U of finite dimension d, we put FU = Hom(AU_, A%(2U)).
We make this a functor as follows. Given an isometric embedding j: U — V, weput W =V g jU

and e = dim(W). As j: U — jU is an isomorphism and A°W is one-dimensional, we have an
evident isomorphism

FU = Hom(A\%jU_ @ N*W_, \4(2;U) ® \XW_).
The isomorphism V = jU @ W gives an isomorphism A\jU_ ® AW = \¢teV and~ an eml)edding
A(25U) @ NeW_ — \4+e(2V). Putting this together gives the required map j,: FU — FV.
There are also obvious maps F(U)Q F(V) — F(U®V), compatible with the above functorality.
This gives maps PF(U) x PF(V) — PF(U @ V) of the associated projective spaces.

Next, recall that a point of GyU is a d-dimensional subspace X < 2U. We define
det(X) = Hom(\*U_, \*X) € PFU.

One can check that this gives a natural map det: C:v’o - PF, with (;eJt(X oY) = (i\eJt(X) ® (T&(Y).
Finally, for our complete universe & we put FU = 1£>n FU, where U runs over the finite-

U
dimensional subuniverses. It is easy to check that this is again a complete A-universe, and thus
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is unnaturally isomorphic to ¢/. The maps det pass to the colimit to give an H-map det: éol/{ —
Pﬁ’u ~ PU. We write SGold for the pullback of the projection S (ﬁ’L{) — PFUY along the map
det, or equivalently the space of pairs (V,u) where V € Gol and u is a unit vector in the one-
dimensional space det(V) As S(FU) is equivariantly contractible, this is just the homotopy fibre
of det.

Proposition 22.7. There is a natural splitting éou = Séou x PU (which does not respect the
H-space structure).

Proof. 1t is enough to give a section of the H-map det: GOLI — PU. We can include PU = G1U

in G1U C GU in the usual way, then use the projection GU — GOL{ from Proposition 22.4. We
find that the resulting composite PU — PU is actually minus the identity, but we can precompose
by minus the identity to get the required section. |

Remark 22.8. Cartier duality identifies spec(EoPU) with Hom(C,G,,), and the proposition

suggests that spec(EySGold) should be the quotient Mapy(C, Gy, )/ Hom(C, Gy, ). However, there
are difficulties in interpreting this quotient, and it is in fact more useful to take a slightly different
approach as in [1, 2]. We will not give details here.

Next, recall that Greenlees has defined an equivariant analogue of connective K-theory (denoted
by kU4) by the homotopy pullback square

kUs — F(EA,,kU)

KUy — F(EA,,KU).

If v € mkU is the Bott element then kU[v~1] = KU and kU/v = H. 1t is not hard to see that
there is a corresponding element in 74'kU4 with kUa[v '] = KU4 and kUa /v = F(EAy, H).

Proposition 22.9. The zeroth, second and fourth spaces of kU4 are éu, Goll and SGolU respec-
tively.
Proof. We take it as well-known that the zeroth space of KUy4 is GU , and KUy4 is two-periodic so

this is also the 2k’th space for all k. Let Xy, denote the 2k’th space of kU 4, so we have a homotopy
pullback square

X, — F(EA,,BU(2k))

Gu —— F(EA.,Z x BU)

(where BU(0) is interpreted as Z x BU). In the case k = 0, the map i is the identity and so
Xo = GU. In the case k = 1, the map ¢ is just the inclusion

F(EA,,BU) - Z x F(EA,,BU) = F(EA,,7 x BU)

and the map j sends GrlU into {k} x F(EA,,BU). It follows easily that X; = Gold. In the case
k = 2, we note that the cofibration X2kU, = kU4 — F(EA,, H) gives a fibration X, = X; —
F(EAL,K(Z,2)). We know that X; = Gol{ and Proposition 4.4 that F(EA,,K(Z,2)) = PU.
One can check that the resulting map Goll = PU is just :E&Et, and so X, = SGolf as claimed. O
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