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We present a theory of Dyer-Lashof operations in unoriented bordism (the canon-
ical splitting N∗(X) ' N∗⊗H∗(X), where N∗( ) is unoriented bordism and H∗( )
is homology mod 2, does not respect these operations). For any finite covering
space we define a “polynomial functor” from the category of topological spaces
to itself. If the covering space is a closed manifold we obtain an operation de-
fined on the bordism of any E∞-space. A certain sequence of operations called
squaring operations are defined from two-fold coverings; they satisfy the Cartan
formula and also a generalization of the Adem relations that is formulated by us-
ing Lubin’s theory of isogenies of formal group laws. We call a ring equipped with
such a sequence of squaring operations a D-ring, and observe that the bordism
ring of any free E∞-space is free as a D-ring. In particular, the bordism ring of
finite covering manifolds is the free D-ring on one generator. In a second compte-
rendu we discuss the (Nishida) relations between the Landweber-Novikov and the
Dyer-Lashof operations, and show how to represent the Dyer-Lashof operations
in terms of their actions on the characteristic numbers of manifolds.

1. The algebra of covering manifolds.

We begin with the observation that a covering space p : T → B can be used to define a
functor X 7→ p(X) from the category of topological spaces to itself, where

p(X) = {(u, b) | b ∈ B, u : p−1(b)→ X}.

Then p(X) is the total space of a bundle over B with fibers Xp−1(b), and any continuous
map f : X → Y induces a continuous map p(f) : p(X) → p(Y ). We shall say that p( )
is a polynomial functor. For functors F and G from the category of topological spaces to
itself, we have functors F +G, F ×G and F ◦G given by (F +G)(X) = F (X) +G(X),
(F ×G)(X) = F (X)× G(X), and (F ◦ G)(X) = F (G(X)). Polynomial functors happen
to be closed under these operations, and we obtain well-defined operations p+ q, p× q and
p ◦ q on coverings. These operations satisfy the kinds of identities that one should expect
for an algebra of polynomials.

We define the derivative p′ of a covering p : T → B to be the covering whose base
space is T and whose fiber over t ∈ T is the set p−1(p(t))− {t}. The rules of differential
calculus apply: (p+ q)′ = p′ + q′, (p× q)′ = p′ × q + p× q′ and (p ◦ q)′ = (p′ ◦ q)× q′. If
we observe that the total space of p is p′(1) (where 1 denotes a single point) and that its
base space is p(1) the formula (p× q)′(1) = p′(1)× q(1) + p(1)× q′(1) expresses the total
space of (p×q) in terms of the total and based spaces of p and q. Similarly for the formula
(p ◦ q)′(1) = p′(q(1))× q′(1).

Remark 1: There is a parallel between this algebra of covering spaces and the algebra of
combinatorial species developed in [9] and [10].
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Remark 2: By using the Euler-Poincare characteristic one can associate a polynomial
χ(p) to any covering p of a finite complex. We have χ(p + q) = χ(p) + χ(q), χ(p × q) =
χ(p)× χ(q), χ(p ◦ q) = χ(p) ◦ χ(q), and χ(p′) = χ(p)′.

Remark 3: It is also possible to define various kinds of higher differential operators on
coverings. For example, the group Σ2 acts on any second derivative p′′ by permuting the
order of differentiation, and we can define

1

2!

d2p

dx2
= p′′/Σ2 .

Higher divided derivatives can be handled similarly.

Remark 4: Polynomial functors of n variables are easily defined. They are obtained from
n-tuples (p1, . . . , pn) where pi : Ti → B is a finite covering for every i.

Let us now consider coverings of smooth compact manifolds. We say that two coverings
of closed manifolds are cobordant if together they form the boundary of a covering. Let
N∗Σ denote the set of cobordism classes of closed coverings. Let NdΣn denote the set of
cobordism classes of degree n (i.e. n-fold) coverings over closed manifolds of dimension d.

Proposition 1. The operations of sum +, product ×, and composition ◦ are compatible
with the cobordism relation on closed coverings. They define on N∗Σ the structure of a
commutative Z2 algebra, graded by dimension.

Notice that if p ∈ NkΣm and q ∈ NrΣn then p ◦ q ∈ Nmr+kΣmn. This defines in
particular an action of N∗Σ on N∗Σ0 = N∗. More generally, let us see that N∗Σ acts on
the bordism ring of any E∞-space.

Recall (see [1], [18]) that an E∞-space X has structure maps EΣn ×Σn X
n → X for

each n. These structure maps give rise to structure maps p(X) → X for every degree
n covering space p : T → B. To see this it suffices to express p as a pull back of the
tautological n-fold covering un of BΣn along some map B → BΣn. This furnishes a map
p(X) → un(X) = EΣn ×Σn X

n and the structure map p(X) → X is then obtained by
composing with un(X)→ X.

Recall (see [6] for instance) that an element of N∗X is the bordism class of a pair
(M, f) where f : M → X and M is a compact manifold; then p(M) is a compact manifold
and the structure map for X gives p(M)→ p(X)→ X, representing an element in N∗X.

Proposition 2. Let X be an E∞-space. Each covering of degree n and dimension d defines
an operation NmX → Nnm+dX. Cobordant covering spaces give the same operation.
Moreover, for double coverings these operations are additive.

It should be noted that tom Dieck [7] and Alliston [3] develop bordism Dyer-Lashof
operations which agree with ours; the relationship will be clearer after section 2.

Example: The classifying space for finite coverings is BΣ∗ the disjoint union of the clas-
sifying spaces of the symmetric groups BΣn. Then N∗BΣ∗ = N∗Σ and BΣ∗ has a natural
E∞-space structure defined from disjoint sum. The covering operations on N∗BΣ∗ corre-
spond to composition of coverings.
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Remark: It is a classical result [19], [8], [12] that the inclusion i : Σn−1 ⊂ Σn defines a
split monomorphism i∗ : N∗Σn−1 → N∗Σn. In our setting i∗ is the map p 7→ x × p. It is
easy to see, by applying the rules of differential calculus, that the map

q 7→ dq

dx
+ x

1

2!

d2q

dx2
+ x2 1

3!

d3q

dx3
+ · · ·

is a splitting [11].

For any space X let ε : N∗(X) → H∗(X) denote the Thom reduction, where H∗( )
is mod 2 homology. If (M, f) ∈ N∗(X) we have ε(M, f) = f∗(µM ) where µM denotes the
fundamental homology class of M . If X is an E∞-space then each covering of degree n
and dimension d defines an operation HmX → Hnm+dX which is the Thom reduction of
the corresponding operation in bordism.

We now describe the sequence of cobordism class of double coverings that leads to the
concept of D-rings. It is a classical result that N∗(RP∞) = N∗[[t]]. Let qk in N∗BΣ2 =
N∗(RP

∞) be represented by the canonical inclusion RP k ↪→ RP∞. The sequence q0, q1, . . .
is a basis of the N∗-module N∗(RP

∞). The Kronecker pairing N∗(RP∞)×N∗(RP∞)→
N∗ defines an exact duality between N∗(RP∞) and N∗(RP

∞). Let d0, d1, . . . be the basis
dual to the basis t0, t1, t2, . . . under the Kronecker pairing. The relation between the two
bases of N∗(RP

∞) can be expressed as an equality of generating series

(
∑
i≥0

[RP i]xi)(
∑
k≥0

dkx
k) = (

∑
n≥0

qnx
n),

where x is a formal indeterminate. We have d0 = q0, and d1 = q1 since [RP 0] = 1 and
[RP 1] = 0. It turns out (see [2] for instance) that dn can be represented by the Milnor
hypersurface H(n, 1) ↪→ RPn × RP 1 → RPn. The coverings dn and qn give operations
which are distinct in bordism but agree in mod 2 homology.

2. D-rings and Dyer-Lashof operations

Recall that a formal group law over a commutative ring R is a formal power series
F (x, y) ∈ R[[x, y]] which satisfies identities corresponding to associativity and unit; (see
Quillen [21] or Lazard [13] for instance). We say that a formal group law F has order two
if F (x, x) = 0.

The Lazard ring (for formal group laws of order two) is the commutative ring with
generators ai,j and relations making F (x, y) =

∑
ai,jx

iyj a formal group law of order two.
Let us temporarily denote this Lazard ring by L. Then for any ring R and any formal
group law G(x, y) ∈ R[[x, y]] of order two there is a unique ring homomorphism φ : L→ R
such that (φF )(x, y) = G(x, y). Quillen [21] showed that L is naturally isomorphic to
N∗ = N∗(pt). This provides a beautiful interpretation of Thom’s original calculation of
the unoriented cobordism ring.

Let R be a commutative ring and let F ∈ R[[x, y]] be a formal group law of order two
(this implies that R is a Z2-algebra). According to Lubin [14] there exists a unique formal
group law Ft defined over R[[t]] such that ht(x) = xF (x, t) is a morphism ht : F → Ft. The
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kernel of ht is {0, t}, which is a group under the F -addition x+F y = F (x, y). We will refer
to Ft as the Lubin quotient of F by {0, t} and to ht as the isogeny. The construction can be
iterated and a Lubin quotient Ft,s of Ft can be obtained by further killing ht(s) ∈ R[[t, s]].
The composite isogeny F → Ft → Ft,s is

ht,s(x) = ht(x)Ft(ht(x), ht(s)) = xF (x, t)F (x, s)F (x, F (s, t))

Its kernel consists of {0, t, s, F (s, t)}, which is an elementary abelian 2-group under the
F -addition. By doing the construction in a different order we obtain Fs,t but it turns out
that Ft,s = Fs,t.

Definition: A D-ring is a commutative ring R together with a formal group law of order
two F defined over R and a ring homormorphism Dt : R → R[[t]] called the total square,
satisfying the following conditions:

i) D0(a) = a2 for every a in R;
ii) Dt(F ) = Ft;
iii) Dt ◦ Ds is symmetric in t and s. Here we have extended Dt : R → R[[t]] to Dt :

R[[s]]→ R[[s, t]] by defining Dt(s) = ht(s) = sF (s, t).

A morphism of D-rings is a ring homomorphism which preserves the formal group
laws and the total squares. A D-ring is also an algebra over the Lazard ring N∗, and a
morphism of D-rings is a morphism of N∗-algebras.

A D-ring is graded if R is graded and F is homogeneous in grade −1 and Dt(x) has
grading 2i in R[[t]] for each element of grading i in R (where t and s have grading −1).

Example: The Lazard ring N∗ has a unique ring homomorphism Dt : N∗ → N∗[[t]] such
that Dt(F ) = Ft, and this defines a D-structure on N∗. Thus N∗ is initial in the category
of D-rings.

Proposition. If X is an E∞-space then N∗X is a commutative ring under Pontryagin
product; it is also an N∗-algebra. If d0, d1, . . . are the double coverings described in the
previous section then the total squaring

Dt(x) =
∑
n

dn(x)tn

gives an D-structure on N∗X.

Example: BO∗, the disjoint union of the classifying spaces of the orthogonal groups
BO(n), is an E∞-space with N∗BO∗ = N∗[b0, b1, . . .]. It forms a D-ring with F given by
the cobordism formal group law over N∗ and with Dt determined by

Dt(b)(xF (x, t)) = b(x)b(F (x, t))

where b(x) =
∑
bix

i.

We shall refer to any D-ring R with F = (+) as a Q-ring. The mod 2 homology of
an E∞-space E is a Q-ring, and the Thom reduction ε : N∗(E) → H∗(E) is a morphism
of D-rings.
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Proposition. A commutative ring R is a Q-ring if and only if it has a sequence of additive
operations qn : R→ R which satisfy the following three conditions:

i) Squaring: q0(x) = x2 for all x ∈ R.

ii) Cartan formula: qn(xy) =
∑
i+j=n qi(x)qj(y) for all x, y ∈ R.

iii) Adem relations: qm(qn(x)) =
∑
i

(
i−n−1

2i−m−n
)
qm+2n−2i(qi(x)) for all x ∈ R.

In the graded case, grade(qn(x)) = 2 · grade(x) + n.

This is exactly an action of the classical Dyer-Lashof algebra on R. This idea of writing
Adem relations via generating series is suggested by [4] and by Bullett and MacDonald [5].
See [17], [15], [16] for background on Dyer-Lashof operations.

Example: The Q-structure on H∗BO∗ = Z2[b0, b1, . . .] is characterized by

Qt(b)(x(x+ t)) = b(x)b(x+ t)

where b(x) =
∑
bix

i. This expresses via generating series a calculation of Priddy’s in [20].

Notice that if A and B are Q-rings then A ⊗N∗ B = A ⊗Z2 B = A ⊗ B is a Q-
ring. Let Q〈M〉 denote the free Q-ring generated by a Z2-vector space M . If M has a
comultiplication, then Q〈M〉 has a comultiplication extending it which is a morphism of
Q-rings.

Recall that E∞(X) is the free E∞-space generated by X (see [18] or [1] for back-
ground). The following is a classical result:

Theorem 1. (May [17]) For any space X the canonical map

Q〈H∗X〉 → H∗E∞(X)

is an isomorphism which preserves the comultiplication. In particular, H∗BΣ∗ = Q〈x〉 is
the free Q-ring on one generator.

If A and B are D-rings then A ⊗N∗ B is naturally a D-ring. Let us denote D〈M〉
denote the D-ring freely generated by an N∗-module M . If M is a coalgebra in the category
of N∗-modules, then D〈M〉 has a comultiplication.

Theorem 2. The bordism of an E∞-space is an D-ring. Moreover, for any space X the
canonical map

D〈N∗X〉 → N∗E∞(X)

is an isomorphism which preserves the comultiplication. In particular, N∗Σ = N∗(BΣ) =
D〈x〉 is the free D-ring on one generator.

Thus, both D〈x〉 and N∗Σ are algebras equipped with operations of substitution; the
former because it is the set of unary operations in the theory of D-rings and the latter
because we have defined a substitution operation among coverings of manifolds. The
above theorem says that the canonical isomorphism of D-rings D〈x〉 → N∗Σ which sends
the generator x to the unique non-zero element x in N0(BΣ1) preserves the operations of
substitution.
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