
COMPARING HOMOTOPY CATEGORIES

DAVID BLANC

Abstract. Given a suitable functor T : C ! D between model categories, we
de�ne a long exact sequence relating the homotopy groups of any X 2 C with
those of TX , and use this to describe an obstruction theory for lifting an object
G 2 D to C. Examples include �nding spaces with given homology or homotopy
groups.

0. Introduction

A number of fundamental problems in algebraic topology can be described as mea-
suring the extent to which a given functor T : C ! D between model categories
induces an equivalence of homotopy categories: more speci�cally, which objects (or
maps) from D are in the image of T , and in how many di�erent ways. For example:

a) How does one distinguish between di�erent topological spaces with the same
homology groups, or with chain-homotopy equivalent chain complexes? How
can one realize a given map of chain complexes up to homotopy?

b) When do two simply-connected topological spaces have the same rational ho-
motopy type?

c) When is a given topological space a suspension, up to homotopy? Dually,
how many distinct loop space structures, if any, can a given topological space
carry?

d) Is a given �-algebra (that is, a graded group with an action of the primary ho-
motopy operations) realizable as the homotopy groups of a topological space,
and if so, in how many ways?

Our goal is to describe a uni�ed approach to such problems that works for functors
between spherical model categories, for which several familiar concepts and construc-
tions are available. These include a set A of models (to play the role of spheres, in
particular determining the corresponding homotopy groups �C� ), Postnikov systems,
and k-invariants. If a functor T : C ! D respects this additional structure, we
obtain a natural long exact sequence of the form:

(0.1) : : :! �nX
s
�! �CnX

h
�! �Dn TX

@
�! �n�1X : : : ;

which generalizes the EHP sequence, J.H.C. Whitehead's \certain exact sequence",
and the spiral exact sequence of Dwyer, Kan, and Stover. See (4.4) below.
Under these hypotheses, given an object G in D, we want to �nd an object X in C

with TX ' G. The key step is to choose �C�X which �ts into (0.1). We describe
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an inductive procedure for doing this, using the Postnikov systems in both categories,
together with an obstruction theory for lifting G to C, along the following lines:

Theorem. Given T : C ! D and G 2 D as above, for each X 2 C with
TX ' G, there is a tower of �brations in C:

� � �
p(n+1)

���! X̂hn+ 1i
p(n)

��! X̂hni
p(n�1)

���! � � �
p(0)

��! X̂h0i ;

called the modi�ed Postikov tower for X (Def. 5.21), with G mapping compatibly to

TX̂hni for each n, and X ' holimn X̂hni.
Conversely, given such a tower up to level n, the obstruction to extending it to level

n+ 1 lies in Hn+3
� (G; �n+1X̂hni), and the choices for X̂hn+ 1i are classi�ed by:

� a class in Hn+2
� (G; �n+1X̂hni);

� a class in Hn+2
� (X̂hni; Kn+1), where Kn+1 := Coker �n+2�

(n), for �(n) :

Pn+2G! Pn+2TX̂hni.

See Theorem 6.8.

0.2. Related work. The comparison problems discussed above are familiar ones in
algebraic topology:

a) The question of the realizability of a graded algebra as a cohomology ring was
�rst raised explicitly by Steenrod in [Ste], but it goes back to Hopf (in [Ho])
in the rational case. The \Steenrod problem" of realizing a given �1-action
in homology has been studied, for example, in [T, Sm].

b) The comparison between integral and rational homotopy type was implicit in
the notion of a Serre class (cf. [Se, AC]), although an explicit formulation was
only possible after the construction of the rationalization functors of Quillen
and Sullivan in [Q2, Sul].

c) Possible loop space structures on a given H-space were analyzed extensively,
starting with the work of Sugawara and Stashe� (cf. [Sug, Sta]). The dual
question on identifying suspensions has also been studied (see, e.g., [BH]).

d) The question of the realizability of homotopy groups goes back to J.H.C. White-
head, in [W2] (see also [W5]), and has reappeared in recent years in the context
of �-algebras (cf. [DKS1, DKS2]). The relationship between homology and
homotopy groups, which is relevant to the realization problem for both, was
studied in [W3, W4] (in which the \certain exact sequence" was introduced).

In [Ba4], H.-J. Baues gave what appears to be the �rst general theory covering
a wide spectrum of such realization problems. This was an outgrowth of his earlier
work on classifying homotopy types of �nite dimensional CW complexes in [Ba2, Ba3]
(which in turn builds on [W1]).
His initial setting consists of a homological co�bration category C (corresponding

to, and extending, the notion of a resolution model category) under a theory of
coactions T (corresponding to the category �A of x1.2). Baues then constructs
a generalized \certain exact sequence" similar to (0.1), and provides an inductive
obstruction theory for realizing a chain complex (or a chain map) by a T-complex
(corresponding to a CW complex, or more generally a co�brant object in C) { see
[Ba4, VI, (2.2-2.3)]).
These results apply inter alia to the problem of realizing a chain complex by a

topological space (the motivating example for Baues's approach), as well as to the
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realization of a �-algebra (cf. [Ba4, D, (7.9)]). However, here we consider functors
between two di�erent model categories that are not covered by [Ba4]. In particular,
our original motivating example { the realization of a simplicial �-algebra (by a
simplicial space) { shows that in the relative context a more re�ned obstruction
theory may be necessary: compare Theorem (2.3) of [Ba4, VI] with Theorem 6.8
below.

0.3. Remark. Another set of closely related questions { which do not quite �t into
the framework described here, though they can also be stated as realization problems
{ arise in categories of structured ring spectra; see for example [R] and [GH, Cor.
5.9].

0.4. Notation and conventions. T� denotes the category of pointed connected
topological spaces; Set� that of pointed sets, and Gp that of groups. For any
category C, gr C denotes the category of non-negatively graded objects over C, and
sC the category of simplicial objects over C. sSet is denoted by S, sSet� by S�,
and sGp by G. The constant simplicial object an an object X 2 C is written
c(X) 2 sC.
If C has all coproducts, then given A 2 S and X 2 C, we de�ne X
̂A 2 sC

by (X
̂A)n :=
`

a2An
X, with face and degeneracy maps induced from those of A.

For Y 2 sC, de�ne Y 
 A 2 sC by (Y 
 A)n :=
`

a2An
Yn (the diagonal of the

bisimplicial object Y 
̂A) { so that for X 2 C we have X
̂A = c(X)
 A.
The category of chain complexes of R-modules is denoted by ChainR (or simply

Chain, for R = Z).

0.5. Organization: In Section 1 we de�ne spherical model categories, having the
additional structure mentioned above. Most examples of such categories are in par-
ticular resolution model categories, which are described in Section 2; we explain how
to produce the needed structure for them in Section 3. We de�ne spherical functors
between such categories, and construct the comparison exact sequence for them, in
Section 4. This is applied in Section 5 to study the e�ect of a spherical functor on
Postnikov systems. Finally, in Section 6 we construct an obstruction theory as above
for the �ber of a spherical functor. In Section 7 we indicate how the theory works for
the above examples.

0.6. Acknowledgements. I would like to thank Paul Goerss for many hours of
discussion on various issues connected with this paper, and especially for his essential
help with Sections 5-6, the technical core of this note. I would also like to thank Hans
Baues for explaining the relevance of his work in [Ba4] to me.

1. Spherical model categories

Before de�ning the additional structure we shall need, we briey recapitulate the
relevant homotopical algebra:

1.1. Model categories. Recall that a model category is a bicomplete category C
equipped with three classes of maps: weak equivalences, �brations, and co�brations,
related by appropriate lifting properties. By inverting the weak equivalences we obtain
the associated homotopy category ho C, with morphism set [X; Y ] = [X; Y ]C . We
shall concentrate on pointed model categories (with null object �). See [Q1] or [Hi].
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1.2. The set of models. The additional initial data that we shall require for our
model category consists of a set A of co�brant homotopy cogroup objects in C, called
models (playing the role of the spheres in T�). Given such a set A, let �A denote the
smallest subcategory of C containing A and closed under weak equivalences, arbitrary
coproducts, and suspensions. Note that every object in �A is a homotopy cogroup
object, too.

1.3. Example. Let C = G be the category of simplicial groups, Sk = �[k]=@�[k]
the standard simplicial k-sphere in S�, G : S� ! G the Kan's loop functor (cf. [May,
x26.3]), and F : S� ! G the free group functor. For each n � 1, Sn := GSn 2 G �=
FSn�1 will be called the n-dimensional G-sphere, with �kSn ' Sn+k. These, and
their coproducts, are co�brant strict cogroup objects for G. Here A := fS1 = c(Z)g;
in fact, throughout this paper A will be either a singleton, or countable.

1.4. Remark. The adjoint pairs of functors:

T�
S



k�k
S�

G



�W
G

induce equivalences of the corresponding homotopy categories { where �W : G ! S�
is the Eilenberg-Mac Lane classifying space functor, S : T� ! S� is the singular set
functor, and k� k : S� ! T� is the geometric realization functor (cf. [May, x14,23]).
Thus to study the usual homotopy category of (pointed connected) topological spaces,
we can work in G (or S�), rather than T�.

1.5. De�nition. If A is a set of models for C, then given X 2 C, for each A 2 A
let �CA;k(X) := [�kA;X 0]C, where X 0 ! X is a (functorial) �brant replacement.

We write �CkX for (�CA;kX)A2A, and �C�X := (�CkX)1k=0.

1.6. Theories and algebras. Recall that a theory is a small category � with �nite
products (so in particular, an FP-sketch { cf. [Bor, x5.6]), and a �-algebra (ormodel)
is a product-preserving functor � ! Set. Think of � as encoding the operations
and relations for a \variety of universal algebras", the category �-Alg of �-algebras
(which is sketched by �).
For example, the obvious category G, which sketches groups, is equivalent to the

opposite of the homotopy category of (�nite) wedges of circles. An G-theory � (cf.
[BP, x2]) is one equipped with a map of theories

`
S G ! � (coproduct taken in

the category of theories, over some index set S) which is bijective on objects. This
implies that each �-algebra has the underlying structure of an S-graded group, so
that �-Alg can be thought of as a \variety of (graded) groups with operators" (cf.
[Ba4, I, (2.5)]).

1.7. Remark. We will assume that all the functors �Cn (n � 0) take value in a category
�C-Alg sketched by a G-theory �, and thus equipped with a faithful forgetful functor
UC : �C-Alg ! GpA into the category of A-graded groups. The objects of �C-Alg
are called �C-algebras.
For topological spaces, with A = fS1g, the �C-algebras are simply groups. If we

use rational spheres as the models, then �C-Alg is the category of Q -vector spaces.
A more interesting example appears in x2.9 below.

1.8. Constructions based on models. There are a number of familiar construc-
tions for topological spaces which we require for our purposes. We can de�ne them
once we are given a set of models A as above, although they do not always exist (see
x3.10 below).
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1.9. De�nition. A Postnikov tower (with respect to A) is a functor that assigns to
each Y 2 C a tower of �brations:

: : :! PA
n Y

p(n)

��! PA
n�1Y

p(n�1)

���! � � � ! PA
0 Y ;

as well as a weak equivalence r : Y ! PA
1Y := limn P

A
n Y and �brations PA

1Y
r(n)
��!

PA
n Y such that r(n�1) = p(n) Æ r(n) for all n. Finally, (r(n) Æ r)# : �CkY ! �Ck (P

A
n Y )

is an isomorphism for k � n, and �Ck (P
A
n Y ) is zero for k > n.

When A is clear from the context, we denote PA
n simply by Pn.

1.10. Example. For a free chain complex C� 2 ChainR of modules over a ring R, we
may take C 0

� := PnC� where C 0
i = Ci for i � n+1, C 0

n+2 = Zn+1C�), and C 0
i = 0

for i � n+3. The map r(n) : C� ! C 0
� is de�ned by r

(n)
n+2 := @n+2 : Cn+2 ! Zn+1C�.

1.11. De�nition. Given an �C-algebra �, a classifying object BC� (or simply
B�) for � is any B 2 sC such that B ' P0K and �C0B

�= �.

The name is used by analogy with the classifying space of a group, which classi�es
G-bundles. One can interpret BC� similarly, though perhaps less naturally (see,
e.g., [BJT, x4.6]).

1.12. De�nition. A module over a �C-algebra � is an abelian group object in
�C-Alg=� (cf. [Q3, x2]), and the category of such is denoted by �-Mod.

1.13. Remark. Since any �C-algebra is in particular a (graded) group, if p : Y ! �
is a module, then Y = K �� (as sets!) for K := Ker (p), with an appropriate �C-
algebra structure (cf. [Bl3, x3]). We may callK itself a �-module (which corresponds
to the traditional description of an R-module, for a ring R).

1.14. Example. For any object X 2 C as above, the A � N-graded group �C�X
has an action of the A-primary homotopy operations, corepresented by the maps in
ho�A (see x2.9 below). In particular, one of these operations, corresponding to the
action of the fundamental group on the higher homotopy groups, makes each �CnX
(n � 1) into a module over �C0X (see Fact 3.6 below).

1.15. De�nition. Given an abelian �C-algebra M and an integer n � 1, an n-
dimensional M-Eilenberg-Mac Lane object EC(M;n) (or simply E(M;n)) is any
E 2 sC such that �CnE

�=M and �CkE = 0 for k 6= n.

1.16. De�nition. Given a �C-algebra �, a module M over �, and an integer n �
1, an n-dimensional extended M-Eilenberg-Mac Lane object E�

C (M;n) (or simply
E�(M;n)) is any homotopy abelian group object E 2 sC=�, equipped with a
section s for p(0) : E ! P0E ' B�, such that �CnE

�= M as modules over �; and
�CkE = 0 for k 6= 0; n.

1.17. De�nition. Given a Postnikov tower functor as in x1.9, an n-th k-invariant
square (with respect to A) is a functor that assigns to each Y 2 C a homotopy
pull-back square:

(1.18) PA
n+1Y

PB

p(n+1) //

��

PA
n Y

kn
��

B� // E�(M;n+ 2)
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for � := �C0Y and M := �Cn+1Y , where p(n+1) : Pn+1Y ! PnY is the given
�bration of the Postnikov tower.
The map kn : PnY ! E�(M;n + 2) is the n-th (functorial) k-invariant for Y .

1.19. Example. If C� is a chain complex of R-modules, and PnC� = C 0
� as in x1.10,

we may take E(Hn+1C�; n+ 2) = E�, where Ei = 0 for i < n+2, En+2 = Zn+1C�,
and En+3 = Bn+1C�. Then kn : C

0
� ! E� is de�ned by Id : C 0

n+1 ! En+1.
Of course, if R is a principle ideal domain (or a hereditary ring), such as Z, then

the k-invariants for C� are trivial, since in that case any two free (or projective)
chain complexes with the same homology are homotopy equivalent, by [D, Prop. 3.5].
But this need not hold for an arbitrary ring R.

1.20. Spherical models. A set of objects A := fAgA2A in a model category C is
called a collection of spherical models if the following axioms hold:

Ax 1. Each �nA (A 2 A, n 2 N) is a co�brant homotopy cogroup object in C.

Ax 2. For any X 2 C and n � 1, �CnX has a natural structure of a module over
�C0X.

Ax 3. A map f : X ! Y is a weak equivalence if and only if �CA;nf is a weak
equivalence for each A 2 A and n 2 N .

Ax 4. C has Postnikov towers with respect to A.

Ax 5. For every �C-algebra � and module M over �, the classifying object B�
and extended M -Eilenberg-Mac Lane object E�(M;n) exist (and are unique
up to homotopy) for each n � 1.

Ax 6. C has k-invariant squares with respect to A for each n � 0.

If each model �kA (A 2 A, k 2 N) is a co�brant strict cogroup object { which
implies that every object in �A is such, up to weak equivalence { we call A a
collection of strict spherical models.
A pointed simplicial model category C equipped with a collection A := fAgA2A

of spherical models is called a spherical model category, and we denote it by hC;Ai.
Such a category is strati�ed in the sense of Spali�nski (cf. [Sp]).

1.21. Example. The category S� of pointed simplicial sets, as well as the category
T� of pointed connected topological spaces, have spherical model category structures
with A = fS1g. (Functorial k-invariants in these categories are provided by the
construction of [BDG, x5]; in both cases �C-Alg � Gp). Similarly for the category
ChainR of chain complexes over R, with the constructions indicated in x1.10 and
x1.19.

In the examples we have in mind, our model categories enjoy additional useful
properties, which we can summarize in the following:

1.22. De�nition. A spherical model category hC;Ai as above is called strict if the
following axioms hold:

Ax 1. C is a pointed right-proper co�brantly generated simplicial model category
(cf. [Hi, 11.1, 13.1]), in which every object is �brant.

Ax 2. C is equipped with a faithful forgetful functor Û : C ! D, with left adjoint F̂
{ where D is one of the \categories of groups" D = Gp, grGp, G, R-Mod,
or sR-Mod, for some ring R.
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Ax 3. The adjoint pair (Û ; F̂ ) create the model category structure on C in the sense

of [Bl1, x4.13] { so in particular Û creates all limits in C.
Ax 4. A is a collection of strict spherical models, each of which lies in the image of

the composite F̂ ÆF 0 : S ! C, where F 0 : S ! D is adjoint to the forgetful
functor U 0 : D ! S, with the group structure on HomC(A;X) induced from

that of Û(X).

2. Resolution model categories

Many examples of spherical model categories �t into the framework originally con-
ceived by Dwyer, Kan and Stover in [DKS2] under the name of \E2 model categories,"
and later generalized by Bous�eld (see [Bou, J]. A slightly di�erent generalization is
given by Baues in [Ba4, Ch. D, x2] under the name of spiral model categories.
First, some preliminary concepts:

2.1. De�nition. The n-th matching object for a simplicial object X over C is de�ned
by

MnX = f(x0; : : : ; xn) 2 (Xn�1)
n+1 j dixj = dj�1xi for all 0 � i < j � ng

(see [BK, X,x4.5]). Note that each face map dk : Xn ! Xn�1 factors through the
obvious map Æn : Xn !MnX.

2.2. De�nition. The n-th latching object of a simplicial object X over C is de�ned
LnX :=

`
0�i�n�1Xn�1= �, where for any x 2 Xn�k�1 and 0 � i � j � n� 1 we

set sj1sj2 : : : sjkx in the i-th copy of Xn�1 equivalent to si1si2 : : : sikx in the j-th
copy of Xn�1 whenever the simplicial identity sisj1sj2 : : : sjk = sjsi1si2 : : : sik holds.
The map �n : LnX ! Xn is de�ned �n(x)i = six, where (x)i 2 (Xn�1)i.

There are two canonical ways to extend a given model category structure on Ĉ to
C := sĈ:

2.3. The Reedy model structure. This is de�ned by letting a simplicial map
f : X ! Y in C := sĈ be:

(i) a weak equivalence if fn : Xn ! Yn is a weak equivalence in Ĉ for each
n � 0;

(ii) a (trivial) co�bration if fnq�n : XnqLnX LnY ! Yn is a (trivial) co�bration

in Ĉ for each n � 0;
(iii) a (trivial) �bration if fn � Æn : Xn ! Yn �MnY MnX is a (trivial) �bration

in Ĉ for each n � 0.

See [Hi, 15.3].

2.4. The resolution model category. Let Ĉ be a pointed co�brantly generated
right proper model category (in our cases, every object will be �brant, though this

is not needed in general { cf. [J]). Given a set Â of models for Ĉ (x1.2), we let

A := fc(�kÂ)gk2N;Â2Â (the constant simplicial objects on �kÂ 2 Ĉ) be the set of

models for C. Note that �nc(�kÂ) := c(�kÂ)
̂Sn (x1.2), so we shall generally

reserve the notation �k for (internal) suspension in Ĉ, and �
Sn for the (simplicial)

suspension in C = sĈ.

2.5. Remark. If we do not assume that each Â 2 Â is a homotopy cogroup object
in Ĉ, we take A := f(�kÂ)
 S1gA2A as our collection of models for C.
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2.6. De�nition. A map f : V ! Y in C = sĈ is called homotopically Â-free if for
each n � 0, there is

a) a co�brant object Wn in �Â � Ĉ, and
b) a map 'n : Wn ! Yn in C inducing a trivial co�bration (Vn qLnV LnY ) q

Wn ! Yn.

We de�ne the resolution model category structure on sĈ determined by Â, by
letting a simplicial map f : X ! Y be:

(i) a weak equivalence if �CA;nf is a weak equivalence of simplicial groups for
each A 2 A and n � 0.

(ii) a co�bration if it is a retract of a homotopically Â-free map;
(iii) a �bration if it is a Reedy �bration (x2.3(iii)) and �CA;nf is a �bration of

simplicial groups for each A 2 A and n � 0

2.7. De�nition. Given a �brant X 2 sĈ, de�ne its n-cycles object ZnX to be
fx 2 Xn j dix = 0 for i = 0; : : : ; ng (the �ber of Æn : Xn !MnX of x2.1). Similarly,
the n-chains object for X is CnX = fx 2 Xn j dix = 0 for i = 1; : : : ; ng.

If X is �brant, the map d0 = dn0 := d0jCnX : CnX ! Zn�1X �ts into a �bration
sequence:

(2.8) � � �
ZnX ! Zn+1X
jX
n+1
��! Cn+1X

d
n+1
0���! ZnX

(see [DKS2, Prop. 5.7]).

2.9. De�nition. A �A-algebra is a product-preserving functor from (ho�A)
op to

sets. The category of �A-algebras is denoted by �A-Alg.
Equivalently, we can think of an �A-algebra � as an N�A-graded group equipped

with an action of the A-primary homotopy operations (corepresented by the maps in
ho�A).
Thus we can think of the functor �C� as taking value in �A-Alg. This explains the

additional �C-algebra structure on the A-graded groups �CnX, mentioned in x1.7:

when C = sĈ, we have �C-Alg := �Â-Alg.

2.10. Example. When C = G, and A = fS1g { so �A is the category of
wedges of G-spheres (x1.3) { then (up to indexing) �A-Alg is the usual category
of �-algebras (see [Sto, x2]): graded groups equipped with an action of the primary
homotopy operations (Whitehead products and compositions).

2.11. Examples of resolution model categories. In this paper we shall be inter-
ested mainly in the following instances of resolution model categories:

(a) Let Ĉ = Gp with the trivial model category structure: i.e., only isomorphisms
are weak equivalences, and every map is both a �bration and a co�bration.
Let Â = fZg consist of the free cyclic group (whose coproducts are the
cogroup objects in Gp). The resulting resolution model category structure

on G := sĈ is the usual one (cf. [Q1, II,x3]. Here �C-Alg � Gp { there is
no extra structure on the individual homotopy groups of a simplicial group.
Note that if we tried to do the same for Ĉ = Set, there are no nontrivial

cogroup objects, while in S not all objects are �brant. Note also that the
category T� of pointed topological spaces, which is one of the main examples
we have in mind, has a spherical model category structure which is not strict
(x1.22). This explains the signi�cance of Remark 1.4 in our context.
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(b) The previous example extends to any category Ĉ of (possibly graded) universal
algebras with an underlying group structure { such as rings, R-modules,
associative algebras, Lie algebras, and so on { so that C is corepresented by
a G-theory �, in the language of [BP, x4]. Here A consists of free monogenic
algebras (one for each isomorphism class), and thus once more �C-Alg � C.

(c) We can iterate the process by taking G for Ĉ, and letting Â := fSng1n=1 (x1.3).
We thus obtain a resolution model category structure on sG (or equivalently,
on the category of simplicial spaces).
In this case the homotopy groups �sGk;nX, denoted briey by �\nX, are

the \bigraded groups" of [DKS2], and Proposition 5.8 there shows that, for a
�brant simplicial space X 2 sG, we have �CA;nX

�= �0 map(A
 Sn; X).

(d) If C is a resolution model category and I is some small category, the category
CI of I-diagrams in C also has a resolution model category structure, in which
the models consists of all free I-diagrams F [A; i] for i 2 Obj I and A 2 A,
where F [A; i](j) :=

`
HomI (i;j)

A. See [BJT, x1]).

2.12. Remark. In all these examples, if Y 2 C = sĈ, is �brant, then for each n � 0
we have an exact sequence:

(2.13) �Ĉ�Cn+1X
(dn+10 )#
�����! �Ĉ�ZnX

#̂n�! �CnY ! 0:

3. Constructions in resolution model categories

Not all spherical model categories are resolution model categories (see x1.21), but
all known examples appear to be Quillen equivalent to such. Conversely, the examples
of resolution model categories hC = sĈ;Ai we are interested in are spherical (though
this does not hold in general { see x3.10 below). We briey indicate why this is so.

3.1. Postnikov sections. Given Y 2 sĈ, for each n � 0 de�ne Y (n) 2 sĈ by

setting Y
(n)
k := Yk for k � n + 1 and Y

(n)
k := Mk(Y

(n)) (x2.1) for k � n + 2.
Note that for any X 2 sC, MkX depends only on X through dimension (k � 1),
so this de�nition is valid inductively. Denote the obvious maps by r(n) : Y ! Y (n)

and p(n) : Y (n+1) ! Y (n) (see [DK2, x1.2]).

Now for any X 2 sĈ, choose a functorial �brant replacement Y , and set PnX :=
Y (n), with '(n) : X ! PnX de�ned to be the composite of r(n) with the trivial
co�bration i : X ! Y , and p(n) : Pn+1X ! PnX de�ned as above.

3.2. Remark. The functor �(n) : C ! C is right adjoint to the (n + 1)-skeleton
functor skn+1, so PnX depends only on skn+1X, even if X is not �brant. If X is
�brant, we can �nd Y ' PnX with skn+1 Y = skn+1X.

3.3. Fact. In each of the examples of x2.11(a-d), the tower:

X ! : : :! Pn+1X
p(n)

��! PnX ! : : :! P0X

is a functorial Postnikov tower for C = sĈ with respect to A (x1.9).

Proof. From x2.3 and x3.1 it follows that if Y 2 sĈ is �brant, then so is each Y (n),

and for each n, Y (n+1) ! Y (n) is a �bration, ZkY
(n) = 0 and CkY

(n) d0�! Zk�1Y
is an isomorphism for k � n+ 2. The claim then follows from (2.13). �
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3.4. Fact. In each of the examples of x2.11(a-d), there is a classifying object B�
for any �A-algebra �, and it is unique up to homotopy.

Proof. In the algebraic cases of x2.11(a-b), we may take B� to be (a co�brant
model for) the constant simplicial object on �. For simplicial spaces, B� may
be constructed as for topological spaces, using generators and relations (see [BDG,
x8.9]). The extension to the diagram case of x2.11(d) is objectwise. �

3.5. Fact. In each of the examples of x2.11(a-d), for each n � 1 there is an n-
dimensionalM -Eilenberg-Mac Lane object E(M;n) for any abelian �A-algebra M ,
and there is an n-dimensional extended M -Eilenberg-Mac Lane object E�(M;n) for
any �A-algebra � and module M over �. Each of these is unique up to homotopy.

Proof. In the algebraic cases of x2.11(a-b), we may take E(M;n) to be the iterated
Eilenberg-Mac Lane construction �W on BM , while E�(M;n) is a semi-direct
product E(M;n)nB� (see [BDG, Prop. 2.2]). For simplicial spaces, use the explicit
construction of [BDG, x8.9] The extension to the diagram case is again objectwise.

�

3.6. Fact. In each of the examples of x2.11(a-d), for each n � 1 and X 2 C, �CnX
has a natural structure of a module over �C0X.

Proof. Note that by [Q1, II,1,(6)] we have map(A
 Sn; X) �= mapS(S
n;map(A;X))

(unpointed maps), so �CnX ! �C0X associates to each f : A 
 Sn ! X its
component in map(A;X). This de�nes an abelian algebra over �C0X by [BP, Prop.
6.26]). �

3.7. Fact. In each of the examples of x2.11(a-d), for each X 2 sC, � := �C0X
and n � 1, the commutative square obtained by applying the functor Pn+2 to the
pushout diagram:

Pn+1X

PO

p(n+1) //

��

PnX

kn
��

B� // Y

is an n-th k-invariant square (Def. 1.17) { that is, Pn+2Y ' E�(�CA;n+1X; n+ 2).

Proof. See [BDG, x5]. �

We may summarize these facts in the following:

3.8. Theorem. The following resolution model categories (cf. x2.11) are strict spher-
ical model categories:

i. The category C = s�-Set� of simplicial �-algebras for any G-theory �, with
Â consisting of monogenic free �-algebras;

ii. In particular, the category C = G of simplicial groups, with Â = fZg;

iii. The category sG of bisimplicial groups (\simplicial spaces"), with Â =
fS1 
 Skg1k=0.

iv. The category CI of I-diagrams in a strict spherical model category C.

3.9. Theorem. The following are spherical model categories (which are not strict):

i. The category S� of pointed simplicial sets, with A = fS1g;
ii. The category T� of pointed topological spaces, with A = fS1g;

iii. The category sT� of simplicial pointed topological spaces, with Â = fS1 

Skg1k=1.
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3.10. Non-spherical model categories. Consider the trivial model category struc-
ture on Ĉ = Gp, with Â := fA = Z=pg (for p an odd prime). This de�nes a
resolution model category structure on G { or equivalently, on T� (see Remark
2.5). Note that �
 Sn corresponds to suspension of simplicial sets, not simplicial
abelian group, so the model A 
 Sn 2 G corresponds to the n-dimensional mod p
Moore space Sn�1 [p e

n.
Thus �CA;kX := [A
 Sk; X] is by de�nition the k-th mod p homotopy group of X

{ denoted by �k(X;Z=p) in [Ne, Def. 1.2] { which �ts into a short exact sequence:

(3.11) 0! �kX 
 Z=p! �k(X;Z=p)! TorZ1 (�k�1X;Z=p)! 0

for k � 2 (see [Ne, Prop. 1.4]). In particular, for Y := A
 Sn (n � 4) we have

�i(Y ;Z=p) =

(
Z=p for i = n� 1; n;

0 for 2 � i < n� 1 or i = n + 1;

with the two non-trivial groups connected by a Bockstein (cf. [Ne, x1]).

However, the resolution model category structure on G determined by A is not
spherical: if it were, in particular there would be Postnikov functors Pk = PA

k for
all k � 1 (Def. 1.9). From (3.11) we see that, disregarding torsion prime to p, because
of the Bockstein we must have Pn�1Y ' E(Z; n�1) and PnY ' E(Z=p; n�1) (for
Y = Sn�1 [p e

n). But then there is no non-trivial map PnY ! Pn�1Y .

3.12. Cohomology in spherical model categories. Note that the k-invariants of
a simplicial object actually take value in cohomology groups, as expected:

3.13. Proposition. For each �A-algebra � and module M over �, the functors Dn :
C=B� ! AbGp (n > 0), de�ned Dn(X) := [X;E�(M;n)]B�, are cohomology
functors on C { that is, they are homotopy invariant, take arbitrary coproducts to
products, vanish on the spherical models �nA, except in degree n, and have Mayer-
Vietoris sequences for homotopy pushouts.

We therefore denote [X;E�(M;n)]B� by Hn
�(X; M).

Proof. See [BP, Thm. 7.14]. �

Fact 3.5 then follows from Brown Representability, since E�(M;n) represents the
n-th Andr�e-Quillen cohomology group in C; see [BDG, x6.7] and [Bl3, x4].

4. Spherical functors

Our objective is to study functors between model categories, and investigate the ex-
tent to which they induce an equivalence of homotopy categories. Our methods work
only for functors between spherical model categories which take models to models, in
the following sense:

4.1. De�nition. Let hC;Ai and hD;Bi be two spherical model categories. A
functor T : C ! D is called spherical if

i. T de�nes a bijection A! B;
ii. T j�A preserves coproducts and suspensions;
iii. T induces an equivalence of categories �C-Alg � �D-Alg (in fact, it suÆces

that �D-Alg be a full subcategory of �C-Alg).
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4.2. Examples of spherical functors. In the cases we shall be considering (those
mentioned in the introduction), C and D will be strict spherical resolution model

categories, with C = sĈ and D = sD̂, and T will be prolonged from a functor
T̂ : Ĉ ! D̂.

The four examples:

(a) For hĈ; Âi = hGp; fZgi and hD̂; B̂i = hAbGp; fZgi, let T̂ = Ab : Gp! AbGp
be the abelianization functor.
Here C = sĈ = G, so ho C is equivalent to the homotopy category of

pointed connected topological spaces (x1.4), while D = sD̂, the category
of simplicial abelian groups, is equivalent to the category of chain complexes
under the Dold-Kan correspondence (see [D, x1]). Thus T : C ! D represents
the singular chain complex functor C� : T� ! Chain.
Note that �C-Alg = Gp, while �D-Alg = AbGp, in this case, so strictly

speaking T does not induce an equivalence of categories. But since AbGp
is a full subcategory of Gp, we can in fact think of �\ as taking values in
groups.

(b) For hĈ; Âi = hGp; fZgi and hD̂; B̂i = hHopf ; fHgi, where Hopf is the
category of complete Hopf algebras over Q , H is the monogenic free object in
this category, let Q̂ : Gp! Hopf be the functor which associates to a group
G the completion of the group ring Q [G] by powers of the augmentation
ideal.
Again, C = sĈ is a model category for connected topological spaces,

while D = sD̂ is a model category for the rational simply-connected spaces
(see [Q2]); Q (when restricted to connected simplicial groups) represents the
rationalization functor. Once more, �C-Alg = Gp, while �D-Alg is the
subcategory of vector spaces over Q .

(c) For hĈ; Âi = hSet�; fS
0gi (so that hC;Ai = hS; fS1gi, by Remark 2.5), and

hĈ; Âi = hGp; fZgi, let F̂ : Set� ! Gp be the free group functor.

Again, we think of both C = sĈ = G and D = sD̂ = S� as model
categories for pointed topological spaces, (under the respective equivalences
of x1.4) { so F here represents the suspension functor � : T� ! T� (rather
than 
�, as one might think at �rst glance).

(d) For hĈ; Âi = hG; fSkg1k=0i and hD̂; B̂i = h�-Alg; f��S
kg1k=0i, let b�� : G !

�-Alg be the graded homotopy group functor X 7! ��X. Here C = sG is
a model category for simplicial spaces.

4.3. Theorem. Let hC;Ai and hD;Bi be spherical model categories, and let T :
C ! D be a spherical functor. Then for each X 2 C and A 2 A there is a natural
long exact sequence of �C-algebras:

(4.4) : : :! �X�;nX
sXn�! �CA;nX

hXn�! �CT�(�);nTX
@Xn�! �T�;n�1X : : : :

We call (4.4) the comparison exact sequence for T . Compare [Ba4, V, (5.4)].

Proof. If ~X ! X is a functorial �brant replacement, the functor T induces a natural

transformation � : mapC(A; ~X) ! mapD(TA;
dT ~X), which we may functorially
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change to a �bration of simplicial sets, with �ber F (X). Setting �T�;n := �nF (X),
the corresponding long exact sequence in homotopy is (4.4).
Note that the map hXn = hX is also natural in the variable A, so the graded map

hX� : �CnX ! �Dn TX is a morphism of �C-algebras (i.e., �Â-algebras). �

4.5. Applications of Theorem 4.3. The Theorem is not very useful in this gen-
erality. However, in all the examples of x4.2, we obtain interesting (though mostly
known) exact sequences:

(a) For T̂ = Ab : Gp! AbGp the abelianization functor, where T : G ! sAbGp
represents the singular chain complex functor C� : T� ! Chain (cf. x4.2(a)),
the sequence (4.4) is the \certain exact sequence" of J.H.C. Whitehead:

(4.6) : : :! �nX ! �nX
hn�! Hn(X;Z)! �n�1X : : :

(See [W4]). In particular, the third term in this sequence, �An (X), is simply
the n-th homotopy group of the commutator subgroup of GX.

(b) For Q : G ! sHopf of x4.2(b), representing the rationalization functor,
we obtain a long exact sequence relating the integral and rational homotopy
groups of a simply-connected space X. The third term in (4.4) may be de-
scribed in terms of the torsion subgroup of ��X together with ��X 
 Q=Z.

(c) The free group functor F̂ : Set� ! Gp of x4.2(c) represents the suspension
� : T� ! T�, and indeed for K 2 S� the map hK , which is the composite:

�nK = �0mapS�(S
n; K) �! �0 mapG(FS

n; FK)
�=
�! �0 mapS�(�S

n;�K) = �n+1�K ;

is the suspension homomorphism, so (4.4) is a generalized EHP sequence (cf.
[Ba1, G, No]).

(d) For �� : sG ! s�-Alg as in x4.2(d), it turns out that for any simplicial
space X 2 sG, the induced map hXn is the \Hurewicz homomorphism"

hn : �
\
nX ! �n��X of [DKS2, 7.1], while �TnX is just 
�\n�1X { that is,

�Ti;nX = �\i+1;n�1X for each i. Thus (4.4) is the spiral long exact sequence:

(4.7) : : : �n+1��X
@?
n+1
���! 
�\n�1X

sn�! �\nX
hn�! �n��X ! � � ��\0X

h0�! �0��X ! 0

of [DKS2, 8.1]. Of course, �\�1X = 0, so h0 is an isomorphism.

Note that for T : C ! D as above, the homotopy groups �Dn TX for any X 2

C = sĈ may be computed using the Moore chains C�TX as in x2.7; each �Dn TX
is a �D-algebra, abelian for n � 1.

4.8. Explicit construction of the spiral exact sequence. It may be helpful to
inspect in detail the construction of last long exact sequence, since it is perhaps the
least familar of the four. Speci�cializing to Ĉ = G and T = ��, we have:

4.9. Lemma. For �brant X 2 C, the inclusion � : CnX ,! Xn induces an
isomorphism �? : ��CnX �= Cn(��X) for each n � 0.

Proof. See [Bl2, Prop. 2.11]. �
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Together with (2.13), this yields a commuting diagram:

(4.10) ��Cn+1X
(d0)# //

�? �=
��

��ZnX
#̂n // //

�̂?
��

�\nX

hn
��

Cn+1(��X)
d��X0 // Zn(��X)

#n // // �\n��X

which de�nes the dotted morphism of �-algebras hn : �
\
nX ! �n(��X). Note that

for n = 0 the map �̂? is an isomorphism, so h is, too.
If X 2 sG is �brant, applying �� to the �bration sequence (2.8) yields a long exact

sequence, with connecting homomorphism @n : 
��ZnX = ��
ZnX ! ��Zn+1X;
(2.13) then implies that

(4.11) 
�\nX = 
Coker (dn+10 )# �= Im @n �= Ker (jXn+1)# � ��Zn+1X;

and the map sn+1 : 
�
\
nX ! �\n+1X in (3.11) is then obtained by composing the

inclusion Ker (jXn+1)# ,! ��Zn+1X with the quotient map #̂n+1 : ��Zn+1X ! �\n+1X
of (2.13).
Similarly, hn : �\nX ! �\n��X is induced by the inclusion (jXn )# : ��ZnX !

Zn��X � Cn��X, and @?n+2 : �
\
n+2��X ! 
�\nX is induced by the composite

Zn+2��X � Cn+2��X �= ��Cn+2X
(dn+20 )#
�����! Zn+1��X;

which actually lands in Ker (jXn+1)#
�= 
�\nX by the exactness of the long exact

sequence for the �bration.
Moreover, for each n � 0, (4.10) may be extended (after rotating by 90Æ) to a

commutative diagram with exact rows and columns:

0

��

0

��

0

��
0 // Ker sn

� //

��

Bn+1X

��

(jn)� // // Bn+1��Xn+2
//

��

0

��
0 // 
�\n�1X

� //

��

��ZnX

#̂n
��

(jn)� // Zn��X // //

#n

��

Coker hn //

=

��

0

0 // Ker hn
� //

��

�\nX

��

hn // �n��X // //

��

Coker hn //

��

0

0 0 0 0

in which Bn+1X := Im (dXn+20 )# � ��ZnX and Bn+1��Xn+2 := Im d
��Xn+2
0 are the

respective boundary objects.
The maps @?n+1, sn, and hn, as de�ned above, form the spiral long exact sequence.

4.12. Inverse spherical functors. We may sometimes be interested in functors
between spherical model categories which are not quite spherical. Thus, if T :
hC;Ai ! hD;Bi is a spherical functor as in x4.1, a functor V : D ! C equipped
with a natural transformation # : IdC ! V T is called an inverse spherical functor
to T .
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4.13. Example. For the free group functor F : Set� ! Gp of x4.2(c), the forgetful

functor Û : Gp! Set� (right adjoint to F ) with the adjunction counit � : Id! UF
as the natural transformation #, yields the inverse spherical functor U : G ! S�.
Here we do not think of G as a model for T� { rather, U represents the forgetful
functor from loop spaces (topological groups) to spaces.
Similarly, the adjoint to the abelianization functor Ab : Gp! AbGp is the inclusion

Î : AbGp ! Gp, and the corresponding functor I : sAbGp ! G represents the
factorization of the Dold-Thom in�nite symmetric product functor SP1 : T� ! T�
through Chain.

4.14. Proposition. If V : D ! C is an inverse spherical functor to T , then for
each Y 2 D and B 2 B there is a natural long exact sequence:

(4.15) : : :! �V
B;nY ! �DB;nY

V#
�! �CV�(B);nV Y ! �V

B;n�1Y : : :

Proof. If V is an inverse spherical functor, because T jA is a bijection onto B, there
is an A 2 A such that B = TA. As before, V induces a natural transformation

� : mapD(B; ~Y ) ! mapD(V B;
dV ~Y ) and the natural transformation # : A !

V TA yields ## : mapD(V TA;
dV ~Y ) ! mapD(A;

dV ~Y ) so we get a composite map

mapD(B; ~Y ) ! mapD(A;
dV ~Y ), with homotopy �ber E(Y ). If we let �V

�;nY :=
�nE(Y ), the �bration long exact sequence is (4.15). �

4.16. Remark. Note that in contradistinction to Theorem 4.3, V# of (4.15) need not
respect any operations, since we only have a bijection T jA: A! B, not a functor.
For U : G ! S� as in x4.13, we may assume X 2 G is of the form X ' GK for

K 2 S�, and then V# is the identity:

�nK = �\nX = �0 mapG(FS
n�1; GK) ! �0 mapS�(UFS

n�1; UGK)

�#

�! �0 mapS�(S
n�1; UGK) = �nK ;

(4.17)

so (4.15) is not interesting in this case.

5. Comparing Postnikov systems

The basic problem under consideration in this paper may be formulated as follows:

Question. Given a spherical functor T : hC;Ai ! hD;Bi and an object G 2 D,
what are the di�erent objects X 2 C (up to homotopy) such that TX ' G?

As shown in the previous section, such a pair hX;Gi must be connected by a
comparison exact sequence. Thus, in order to reconstruct X from G, we �rst try to
determine �C�X, and its relation to �D� G.
In order to proceed further, we must make an additional assumption on T , con-

tained in the following:

5.1. De�nition. A spherical (or inverse spherical) functor T : C ! D is called
special if:

i. C = sĈ and D = sD̂ are spherical resolution model categories, and T is
prolonged from a functor T̂ : Ĉ ! D̂.

ii. For any �A-algebra � and module M over �, T induces a homomorphism of
(graded) groups �T : �! �D0 TBC�.
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iii. This �T induces a functor T̂ : �-Mod! �T�-Mod which is an isomorphism
on �-modules (see Remark 1.13).

iv. For each n � 1 and n-dimensional extended M -Eilenberg-Mac Lane object
E = E�

C (M;n), there is a natural isomorphism �Dn TE
�= M which respects

T̂ in the obvious sense.
v. The natural map

(5.2) [X;E�
C (M;n)]BC� ! [TX;ET̂�

D (M;n)]BD T̂L ;

de�ned by composition with the projection

� : TE�
C (M;n)! PnTE

�
C (M;n) = ET̂�

D (M;n) ;

is an isomorphism.

5.3. Example. All the functors we have considered hitherto, except for the rational-
ization functor Q : G ! sHopf of x4.2(b), are special:

(a) For the singular chain functor T : G ! sAbGp, induced by abelianization,
this follows from the Hurewicz Theorem (recall that �C0X is the fundamental
group, in our indexing for X 2 G).

(b) For the suspension � : T� ! T�, induced by the free group functor F :
Set� ! Gp, this follows (in the simply connected case) from the Freudenthal
Suspension Theorem.

(c) For the homotopy groups functor �� : sG ! s�-Alg, (i)-(iii) follow by
inspecting the spiral long exact sequence (4.7), while (iv) is [BDG, Prop. 8.7].

(d) For the inverse spherical functor U : G ! S� of x4.13, induced by the forgetful

functor Û : Gp! Set�, this is immediate from (4.17).

5.4. Lemma. Any special spherical functor T : C ! D as above respects Postnikov
systems { that is, for any X 2 C and n � 0 we have:

(5.5) PD
n TP

C
nX

�= PD
n TX �

so that �CkTX
�= �Dk TPnX and �kX �= �kPnX for k � n.

Proof. This follows from the constructions in x3.1 and the proof of Theorem 4.3. �

5.6. Postnikov systems and spherical functors. From now on, assume T : C !
D is a special spherical functor. Ultimately, for each object G 2 D, we would like
�nd any and all X 2 C such that TX ' G. First, however, we try to discover
what can be said about TX and its Postnikov systems for a given X 2 C. Using
the comparison exact sequence for T and Lemma 5.4, we see that:

(5.7) �Dk TPnX
�=

8><>:
�Dk TX for k � n;

Coker fhXn+1 : �
C
n+1X ! �Dn+1TXg for k = n+ 1;

�k�1PnX for k � n + 2 :

5.8. Fact. If T : C ! D is a special spherical functor, applying �Cn+2 to the
n-th k-invariant kn : PnX ! E�

C (�
C
n+1X; n + 2) yields the homomorphism sXn+1 :

�n+1X ! �Cn+1X.
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Proof. Since T is special, �Dn+2TE
�
C (�

\
n+1X; n+ 2) �= �Cn+1X, and �Dn+2TPnX

�=
�n+1X from (5.7), so this follows from the naturality of the comparison exact se-
quence, applied to the maps in (1.18). �

5.9. Lemma. If T : C ! D is a special spherical functor, for any X 2 C,

Pn+1TPnX //

��

Pn+1TPn�1X

��
Pn+1TBC�

Tkn // Pn+1TE
�
C (�

C
nX; n+ 2)

is a homotopy pullback square in D=TBC�, where � := �C0X.

Proof. Set E := TE�
C (J; n+ 1), Mn�1 := TPn�1X, and Mn := TPnX. The

naturality of the comparison exact sequence, applied to the maps in (1.18), combined
with Fact 5.8, imply that the vertical maps in the following commutative diagram are
isomorphisms:

�Dn+2E //

�=

��

�Dn+1M
n //

�=
��

�Dn+1M
n�1

Tkn�1//

�=

��

�Dn+1E //

�=
��

�DnM
n //

�=
��

�DnM
n�1

�=
��

0 // Coker hXn+1
� // �nX

sXn // �CnX
hXn // �Dn TX

// // Coker hTn

and since the bottom row is part of the comparison long exact sequence, and the rest
of the top sequence to the right is exact for by (5.5), the k-invariant square (1.18)
induces a long exact sequence after applying �\ (except in the bottom dimensions).
The obvious map from Mn to the �ber of Tkn�1 is thus a weak equivalence in
D=TBC� through dimension n+ 1. �

5.10. Corollary. For T : C ! D as above, for any X 2 C and n � 1 the
natural map r(n) : X ! PnX of x3.1 induces an isomorphism �kX �= �kPnX for
k � n + 1.

Proof. For each A 2 A, take �bers vertically and horizontally of the commutative
square:

mapBC�(A; PnX) hPnX //

(kn)�
��

mapBD�(TA; TPnX)

(Tkn)�
��

mapBC�(A;E
�
C (�

C
n+1X; n+ 2))

hE // mapBD�(TA; TE
�
C (�

C
n+1X; n+ 2)) ;

and use Lemma 5.9 and x5.1(iv). �

5.11. Remark. For C = sG this follows from the fact that �nX �= 
�\n�1X, while for
the algebraic cases of x2.11(i-ii), this follows from the fact that Hn+1(K(�; n);Z) = 0
for n � 1.
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5.12. The extension. The map r(n) : X ! PnX induces a map of comparison
exact sequences:
(5.13)

�Cn+2X

��

hX
n+2 // �Cn+2TX

�D
n+2Tr

(n)

��

@?
n+2 // �n+1X

=

��

sn+1 // �Cn+1X

��

hX
n+1 // �Dn+1TX

�D
n+1Tr

(n)

��

@?
n+1 // �nX

=

��
0 // �Dn+2M

n
�= // �n+1PnX // 0 // �Dn+1M

n // �nPnX

so that �Cn+1X �ts into a short exact sequence of �A-algebras:

(5.14) 0! Coker �Dn+2Tr
(n) ! �Cn+1X ! Ker �Dn+1Tr

(n) ! 0;

where

(5.15) Coker �Dn+2Tr
(n) �= Ker hXn+1 and Ker �Dn+1Tr

(n) �= Im hXn+1:

Since hXn+1 is a map of modules over � := �C0X, by Theorem 3.8, (5.14) is
actually a short exact sequence of modules over �, and we can classify the possible
values of J 2 �-Mod (the candidates for �Cn+1X) using the following:

5.16. Proposition. Given Tr(n) : TX ! TPnX, a choice for the isomorphism class
of �Cn+1X uniquely determines an element of

Ext�-Mod(Ker (Tr
(n))n+1;Coker (Tr

(n))n+2):

Proof. Since �-Mod is an abelian category, with a set fAab 
 Sn q BD�gA2A;n2N
of projective generators, the argument of [Mc, III] carries over to our setting. �

5.17. Remark. Observe that given PnX, we know the comparison exact sequence (4.4)
for X only from sn : �n�1X ! �CnX down. However, if �Di Tr

(n) : �Di TX ! �Di M
n

(for i � 0) and the extension (5.14) are also known, all we need in order to determine
(4.4) for X from @?n+3 : �

D
n+3TX ! �n+1X down is the homomorphism

�Dn+3Tr
(n+1) : �Dn+3TX ! �Dn+3TPn+1X ;

which is just @?n+3, as one can see from (5.13).

5.18. Proposition. For any � 2 D, J 0; J 00 2 �-Mod, and n � 2, there is a
natural isomorphism Ext�-Mod(J

00; J 0) �= Hn+1
� (E�

D(J
00; n); J 0).

In particular, this implies that Hn+1
� (E�

D(�; n); �) is stable { i.e., independent
of n.

Proof. By Proposition 3.13�. there is a natural isomorphism

Hn+1
� (E�

D(J
00; n); J 0) �= [E�

D(J
00; n); E�

D(J
0; n+ 1)]sD=BD�;

and given a map  : E�
D(J

00; n)! E�
D(J

0; n+ 1), we can form the �bration sequence
over BD� (that is, pullback square as in (1.18)):


E�
D(J

00; n)

 
�! 
E�

D(J
0; n+ 1) ' E�

D(J
0; n)! F ! E�

D(J
00; n)

 
�! E�

D(J
0; n+ 1):

From the corresponding long exact sequence in homotopy for this sequence in D, we
obtain a short exact sequence of modules over �:

(5.19) 0! J 0 ! J ! J 00 ! 0:
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On the other hand, given a short exact sequence (5.19) in �-Mod, we can construct
a map  : E�

D(J
00; n)! E�

D(J
0; n+ 1) over BD� as follows:

Assume E := E�
D(J

00; n) is constructed starting with skn�1E
�
D(J

00; :) = skn�1BD�,
and En ' W q LnBD� (cf. x2.2), where W is free, equipped with a surjection
� : W ! J 00. Because J !! J 00 is a surjection, and W is free, we can lift � to
�0 : W ! J , de�ning a map ~�0 : ZnE

�
D(J

00; n) ! J . Since �Dn E
�
D(J

00; n) = J 00,

the restriction of ~�0 to BnE
�
D(J

00; n) = Ker fZnE
�
D(J

00; n) ! J 00g factors through
 : BnE

�
D(J

00; n)! J 0 = Ker fJ ! J 00g. Precomposing with d0 : Cn+1E
�
D(J

00; n)!
BnE

�
D(J

00; n) de�nes  : E�
D(J

00; n) ! E�
D(J

0; n+ 1), which classi�es (5.19) as
before. �

5.20. Corollary. For �, J 0, and J 00 as above, there is a natural isomorphism:

Ext�-Mod(J
00; J 0) �= Hn+1

� (E�
C (J

00; n); J 0):

Proof. This follows from (5.2)-(5.7) and the naturality of PD
n+1. �

5.21. De�nition. Given X 2 C, its n-th modi�ed Postnikov section, denoted by
P̂nX, is de�ned as follows:

Let K := ff : A
Sn+1 ! X j A 2 A; [f ] 2 Ker hTn+1 � �Cn+1Xg, and let C be the
co�ber of the obvious map � :

W
f2K A
 Sn+1 ! X (so that �Cn+1C

�= Coker �),

with P̂nX := Pn+1C. There are then natural maps p̂(n+1) : Pn+1X ! P̂nX (induced

by X ! C), as well as �p(n) : P̂nX ! PnX (which is just p
(n)
C : Pn+1C ! PnC �=

PnX), with �p(n) Æ p̂(n) = p
(n)
X : Pn+1X ! PnX. Note that �Cn+1P̂nX

�= Im hXn+1,

and PnP̂nX �= PnX.

The map r̂(n) := p̂(n) Æ r(n) : X ! P̂nX induces a map of comparison exact
sequences:

�Cn+2X
hX
n+2 //

��

�Dn+2TX
@?
n+2 //

�D
n+2T r̂

(n)

��

�n+1X
sn+1 //

=

��

�Cn+1X
hX
n+1 //

��

�Dn+1TX
@n+1 //

= �D
n+1T r̂

(n)

��

�nX

=

��

0 // �Dn+2T P̂nX
�= // �n+1P̂nX

0 // �Cn+1P̂nX
� // �Dn+1T P̂nX

// �nP̂nX

so that:

(5.22) �Dk T P̂nX
�=

8><>:
�Dk TX for k � n + 1;

�n+1X for k = n+ 2;

�k�1P̂nX for k � n + 3 :

Thus r̂(n) induces a weak equivalence Pn+1TX ' Pn+1T P̂nX, which, together

with the existence of the appropriate maps Pn+1X
p̂(n)

��! P̂nX
�p(n)

��! PnX, determines
P̂nX up to homotopy. In fact we have:

5.23. Proposition. P̂nX is determined uniquely (up to weak equivalence) by PnX
and the map � := Pn+1Tr

(n) : Pn+1TX ! Pn+1TPnX.

Proof. Note that In+1 := Ker �Dn+1� is isomorphic to Im hXn+1 and Cn+1 :=
Im �Dn+1� is isomorphic to Coker hXn+1 by (5.15).

We construct Y ' P̂nX as follows, starting with skn+1 Y := skn+1 PnX; by
Remark 3.2, we may assume skn+1 TX = skn+1 TPnX, so that PnTX �= PnTPnX.
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By Fact 3.7), the lower right hand square in Figure 5.24 commutes in D, thus inducing
the rest of the diagram, in which the rows and columns are �bration sequences over
BD�.

F p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p-
�̂

Pn+1TPnX
p p p p p p p p p p p p p-
k̂n

E�
D(In+1; n+ 2)

?

' �
?

p
(n)
TPnX

?

i�

Pn+1TX
-

p
(n)
TX

PnTX �= PnTPnX
-

kTXn
E�
D(�

D
n+1TX; n+ 2)

? ?

kTPnXn

?

q�

BD�
- E�

D(Cn+1; n+ 2) -
=

E�
D(Cn+1; n+ 2)

Figure 5.24

In particular, the induced map k̂n : Pn+1TPnX ! E�(In+1; n+ 2) provides a
canonical lifting of:

kTXn Æ p
(n)
TPnX

: Pn+1TPnX ! E�
D(�

D
n+1TX; n+ 2)

to E�
D(In+1; n + 2). Composing it with the natural map r(n+1) : TPnX ! Pn+1TPnX

de�nes an element in:

[TPnX;E
�
D(In+1; n+ 2)] �= Hn+2

� (PnX; In+1) ;

which we call the n-th modi�ed k-invariant for X.

If k̂n : PnX ! E�
C (In+1; n+ 2) is the map corresponding to k̂n under (5.2)),

then its homotopy �ber Y is (weakly equivalent to) P̂nX, as one can verify by
calculating �C�Y . Note that Lemma 5.9 implies that F ' Pn+1TPnX, so that
� is the homotopy inverse of the weak equivalence Pn+1� : TX ! TPnX, which
completes the construction. �

5.25. Remark. Note that there is a certain indeterminacy in our description of k̂n,
and thus of k̂n, since we must make the lower right corner of Figure 5.24 into a
strict commuting diagram of �brations, rather than one which commutes only up to
homotopy. However,

5.26. Fact. The indeterminacy for k̂n as an induced map is contained in the inde-
terminacy for k̂n as a k-invariant for Pn+1TX = Pn+1TY .

Proof. Let M := TPnX. Making the lower right corner of Figure 5.24 commute on
the nose (assuming q� is already a �bration) requires the choice of a homotopy

H : PnTX ! 
E�
D(Cn+1; n+ 2) = E�

D(Cn+1; n+ 1) ;

so the indeterminacy for k̂n as de�ned above is  �p
�[PnTX;E

�
D(Cn+1; n+ 1)], where

 : E�
D(Cn+1; n+ 1)! E�

D(In+1; n+ 2) classi�es the extension

0! In+1 ! �Dn+1TX ! Cn+1 ! 0

(Proposition 5.18), and p = p
(n)
M : Pn+1M ! PnM = PnTX.

On the other hand, the k-invariant k̂Mn : Pn+1M ! E�
D(In+1; n+ 2) for Pn+1TPnX

(which is Pn+1TX) is determined only up to the actions of the group haut�(Pn+1M)
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of homotopy self-equivalences of Pn+1M over BD�, and of Aut�(In+1), the group of
automorphisms of modules over � of In+1, in [Pn+1M;E�

D(In+1; n+ 2)]. Thus given
a map f : PnM ! E�

D(Cn+1; n + 1), we obtain a self-map g : Pn+1M ! Pn+1M
such that Png = IdPnM and �Dn+1g = Id, by letting g = Id+i�p

�(f), for
i : E�

D(Cn+1; n+ 1) ! Pn+1M the inclusion of the �ber. It is readily veri�ed that g

induces the identity on �D� Pn+1M , so [g] 2 haut�(Pn+1M), and that k̂n+ �p
�(f)

is obtained from k̂n under the action of [g] on Hn+2
� (Pn+1M ; In+1). �

5.27. Notation. Given W ' PnX and � : Pn+1TX ! Pn+1TW , Proposition 5.23
allows us to write P̂n(W; �), or simply P̂nW for P̂nX 2 C, which they determine
up to homotopy. This comes equipped with a weak equivalence � : Pn+1TX !
Pn+1T P̂nW lifting �.

5.28. Corollary. The weak equivalence � : Pn+1TX ! Pn+1T P̂nW is well-de�ned
up to homotopy.

Proof. The map � is inverse to � in Figure 5.24, which is induced by the upper
right hand square, which is determined by k̂n and thus up to a self-equivalence
g : Pn+1TW ! Pn+1TW , according to Fact 5.26. But such a g induces a canonical

self-equivalence g0 : F 0 ! F , where F 0 := Fib (k̂n Æ g), and the resulting �0 : F 0 '
Pn+1TX satis�es � Æ g0 ' �0. �

5.29. De�nition. For W ' PnX and � : Pn+1TX ! Pn+1TW as above, an
extension

(5.30) 0! Coker �Dn+2� ,! J !! Ker �Dn+1�! 0

is called allowable if its classifying cohomology class

[ ] 2 Hn+3
� (E�

D(Coker �n+2�; n+ 2); Ker �n+1�)

(cf. Proposition 5.18) satis�es [ ] Æ k̂n = 0.

5.31. Proposition. For any X 2 C, the extension (5.14) is allowable.

Proof. Writing V ' Pn+1X and Y ' P̂nX, by naturality we have a commutative
square:

PnV
kn //

=

��

E�
C (�

C
n+1V ; n+ 2)

q�

��
PnY

kn // E�
C (Ker �n+1Tr

(n); n+ 2):

Lemma 5.9 and (5.2) then yield the following commuting diagram in D in which
the rows and columns are all �bration sequences over BD�:
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E�
D(Ker hn; n+ 1) - BD�

- E�
D(Ker hn+1; n+ 2)

? ? ?

TPn+1X
-

Tr(n)

TPnX
-

k
E�
D(�

C
n+1X; n+ 2)

?

r(n+2)

?

=
?

q�

TY - TPnX
-
k̂

E�
D(Im hn+1; n+ 2)

?

 

E�
D(Ker hn+1; n+ 3)

The map k is induced by kn, and k̂ is induced by k̂n. The claim then follows
from the universal property for �brations. �

6. The fiber of a special spherical functor

Let T : C ! D be a special spherical functor. We would like to use the results
of Section 5 in order to determine whether a given G 2 D is (up to homotopy) of
the form TX for some X 2 C { and if so, how we can distinguish between such
realizations, or liftings.

6.1. Lifting objects of D. Let us assume for simplicity that � := �D0 G is a
�C-algebra, and that the map �T : � ! �D0 TBC� of x5.1(i) is an isomorphism.
[In the general case, we are faced with an additional, purely algebraic, problem of
determining the �ber of the functor T� : �C-Alg ! �D-Alg (compare [BP]); we
bypassed this question in x4.1(iv).
We want a map ' : TX ! G inducing isomorphisms �Di TX ! �Di G for i � 0.

Our approach is inductive: we are trying to de�ne a tower in C:

(6.2) � � �
p(n+1)

���! X̂hn+ 1i
p(n)

��! X̂hni
p(n�1)

���! � � �
p(0)

��! X̂h0i ' BC�

which are to serve as the modi�ed Postnikov tower of the (putative) X 2 C { so

that in the end we will have X := holimn X̂hni.

At the n-th stage (n � 0), we have constructed X̂hni as our candidate for P̂nX

{ so in particular if we let Xhni := PnX̂hni, (our candidate for the ordinary n-th

Postnikov section of X), then TXhni satis�es (5.7), TX̂hni satis�es (5.22), and

of course X̂hni = Pn+1X̂hni.
Assume also, as part of our inductive hypothesis, a given weak equivalence:

(6.3) �̂(n) : Pn+1G
'
�! Pn+1TX̂hni:

We start the induction with Xh0i := BC�. The natural map r(1) : G !

P1TBC� = BD� allows us to de�ne X̂h0i, together with �̂(0) : P1G
'
�! P1TX̂h0i,

as in De�nition 5.21 (see x5.25).
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6.4. Lifting �(n). The �rst stage in the inductive step occurs in D: we must lift �̂(n)

to �(n) : Pn+2G! Pn+2TX̂hni. Note that by Remark 5.17 and Fact 5.8, we already
know the comparison exact sequence (4.4) for the putative X from hn+1 down; the

lifting � := �(n) will determine @n+2 : �
D
n+2G ! �n+1X̂hni in addition, since this

is just �n+2�, so that Cn+2 := Im �Dn+2� is our candidate for Coker hXn+2, while
Kn+1 := Coker �Dn+2� is our candidate for Ker hXn+1.
From (5.22) we see that the obstruction is the class:

(6.5) �n := k
TX̂hni
n+1 Æ �(n) 2 Hn+3

� (G; �n+1X̂hni) ;

and the di�erent liftings are classi�ed by Hn+2
� (G; �n+1X̂hni).

6.6. Constructing Xhn+ 1i. The next step is to choose a cohomology class k̂n
in Hn+2

� (X̂hni; Kn+1). This �ts into a commutative diagram with rows and �bers
all �bration sequences over BC�:

BC� //

��

E�
C (In+1; n+ 1)

= //

i
��

E�
C (In+1; n+ 1)

 

��
Xhn+ 1i

p̂(n) //

��

X̂hni
k̂n //

��

E�
C (Kn+1; n+ 2)

j�
��

Xhn+ 1i // Xhni
kn // E�

C (J; n+ 2)

for the bottom �bration sequence Xhn+ 1i ! Xhni ! E�
C (J; n + 2) as indicated

(though we shall not need this).
Note that J , our candidate for �Cn+1X, �ts into the short exact sequence of modules

over �:
0! Kn+1 ,! J !! In+1 ! 0;

as in (5.14), and is classi�ed by  := k̂n Æ i 2 Hn+2
� (E�

C (In+1; n+ 1); Kn+1), as in
Corollary 5.20. Moreover, this extension is obviously allowable in the sense of x5.29.

6.7. Lifting �. To complete the induction on (6.3), we must lift � : G! Pn+2TX̂hni.
This will be done in two steps:

First, note that we obtain a commuting diagram:

Pn+2G
-

�
Pn+2TX̂hnip

p
p
p

p
p
p

p
p

p
p
p

p
p

p
p

p
p

p
p

p
p

p
p
pj�
Pn+2TXhn+ 1i

�
�
�
�
��*

~i�

?

p
(n+1)
G

?

p
(n+1)
TXhn+1i

?

p
(n+1)

TX̂hni

Pn+1G
-

f
' Pn+1TXhn+ 1i -

g
' Pn+1TX̂hni

?

kGn+1
?

k
TXhn+1i
n+1

?

k
TX̂hni
n+1

E�
D(�

\
n+2G; n+ 3) -

(�\n+2�)�p
p

p
p

p
p
p

p
p

p
p

p
p

p
p

p
p

p
p
p

p
p

p*q�
E�
D(Cn+2; n + 3) H

H
H
H
HHj

i�

E�
D(�

D
n+1TX; n+ 3)
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in which the columns are �bration sequences over BC�, since by de�nition

�Dn+2� : �
D
n+2G! �Dn+1TX̂hni = �Dn+1TX

factors through Cn+2 := Im �Dn+2�, so that the bottom triangle commutes.
Since the natural K-invariant kGn+1 is given, the other two k-invariants in the

diagram above are determined by inverting the given homotopy equivalences f :
Pn+1G ! Pn+1TXhn+ 1i and g : Pn+1G ! Pn+1TX̂hni (assuming all objects in

D are �brant and co�brant), and letting k
TXhn+1i
n+1 := q� Æ k

G
n+1 Æ f

�1 and k
TX̂hni
n+1 :=

i� Æ k
G
n+1 Æ g

�1, using Fact 3.7.

Therefore, the map � : G ! Pn+2TX̂hni lifts to � : Pn+2G ! Pn+2TXhn+ 1i
(which is induced by q�). In fact, the lifting � is unique up to homotopy. Moreover,

from the proof of Proposition 5.23 we see that this suÆces to de�ne X̂hn+ 1i, as well

as determining a lifting of � to a weak equivalence �̂(n+1) : Pn+2G! Pn+2TX̂hn+ 1i.

We may summarize our results in:

6.8. Theorem. Given G 2 D, there is an object X 2 C such that TX ' G if
and only if there is a tower as in (6.2), serving as the modi�ed Postnikov tower for

X. If we have constructed X̂hni satisfying (6.3) for n, a necessary and suÆcient

condition for the existence of an X̂hn+ 1i satisfying (6.3) for n+1 is the vanishing

of �n 2 H
n+3
� (G; �n+1X̂hni). The choices are classi�ed by:

� Hn+2
� (G; �n+1X̂hni) (distinguishing the liftings of �̂(n) to Pn+2TX̂hni);

and
� k̂n 2 H

n+2
� (X̂hni; Kn+1), where Kn+1 := Coker �n+2�

(n), up to self-homotopy

equivalences of X̂hni over BC� and Aut�(Kn+1). In particular, this dis-
tinguishes the class of �Cn+1X in Ext�-Mod(Ker (Tr

(n))n+1;Coker (Tr
(n))n+2).

Note that �n+1X̂hni = �n+1X̂hn+ 1i = �n+1X, by Corollary 5.10.

6.9. Moduli spaces. It is possible to re�ne the statement of our fundamental prob-
lem of lifting G 2 D to C in terms of moduli spaces:

Given a model category C, let W be a homotopically small subcategory of C, such
that all maps in W are weak equivalences, and if f : X ! Y is a weak equivalence
in C with either X or Y in W, then f 2 W. Recall from [DK1, x2.1] that the
nerve BW of such a category is called a classi�cation complex. Its components are
in one-to-one correspondence with the weak homotopy types (in C) of the objects of
W, and the component containing X 2 C is weakly equivalent to the classifying
space B hautX of the monoid of self-weak equivalences of X.

6.10. De�nition. Given a spherical functor T : C ! D and G 2 D, we denote by
M(G) the category of objects in D weakly equivalent to G (with weak equivalences as
morphisms), and by TM(G) the category of objects X 2 C such that TX 2M(G)
(again, with weak equivalences in C as morphisms). The \pointed" version is denoted
by R(G) { the category of pairs (X; �), where X 2 C and � : G ! TX is a
speci�ed weak equivalence.
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In all our examples the obvious functors R(G)
F
�! TM(G)

T
�! M(G) preserve

�brant and co�brant objects, and thus induce a homotopy pullback diagram:

BR(G)
BF //

��

BTM(G)

BT
��

fIdGg // BM(G)

and there are weak equivalences BTM(G) '
`

X2�0TM(G)B hautX, where BM(G) '

B Aut(G) for Aut(G) the monoid of self weak equivalences of G.

6.11. Towers of moduli spaces. Although BTM(G) is the more natural object of
interest in our context, it is more convenient to study BR(G) by means of a tower
of �brations, corresponding to the Postnikov system of X 2 R(G):

Let Rn(G) denote the category whose objects are pairs (X̂hni; �0), where X̂hni 2

C has Pn+1X̂hni ' X̂hni and �0 : Pn+1G ! Pn+1TX̂hni is a weak equivalence.
The maps of Rn(G) are weak equivalences compatible with the maps p(n).
As in [BDG, Thm. 9.4], one can show that BR(G) ' holimnBRn(G), so we may

try to obtain information about the moduli space TM(G) by studying the successive
stages in the tower:

(6.12) : : : BRn+1(G)
BFn��! BRn(G)

BFn�1
����! : : :! BR1(G):

However, from the discussion above we see that we need several intermediate steps
in the study of BRn+1(G) ! BRn(G), corresponding to the additional choices

made in obtaining P̂n+1X and p(n+1) : Pn+2G
'
�! Pn+2T P̂n+1X from P̂nX and

p(n) : Pn+1G
'
�! Pn+1T P̂nX. As a result one obtains a re�nement of the tower (6.12),

where the successive �bers F are either empty, or else generalized Eilenerg-Mac Lane
spaces, whose homotopy groups may be described in terms of appropriate Quillen
cohomology groups. We leave the details to the reader; compare [BDG, Thm. 9.6].

7. Applying the theory

The approach to the lifting problem for a spherical functor T : C ! D described
in the previous section is somewhat unwieldy. However, in speci�c applications it
may simplify in various ways. We illustrate this by a number of examples:

7.1. Singular chains. Consider the singular chain functor C� : T� ! Chain, which
in the form T : G ! sAbGp is induced by abelianization (see x4.2(a)). Thus, given
a chain complex G�, we would like to �nd all topological spaces X (if any) with
C�X ' G�. Over Z, this is equivalent to the question of realizing a given sequence
of homology groups.
Our approach uses Whitehead's exact sequence (4.6) to relate the (trivial) Post-

nikov system for the chain complex G� to the modi�ed Postnikov system for the
space X, in which we attach at each stage not a single new homotopy group, but a pair
of groups in adjacent dimensions, corresponding to the image and kernel respectively
of the Hurewicz homomorphism.
It should be observed that the functor T involves only \algebraic" categories C =

sĈ, where Ĉ { in our case, Gp or AbGp { has a trivial model category structure, as
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in x2.11(a-b). The analysis in Section 6 then simpli�es considerably, in as much as the
categories of �C-algebras and �D-algebras are simply Gp and AbGp, respectively.
As noted in the Introduction, Baues's [Ba4, VI, (2.3)] is actually a generalization

the obstruction theory described here for this case. His earlier approach in [Ba3] (as
well as that of Benkhalifa in [Be] is parallel to this, though not framed in the same
cohomological language. See [Man] for another viewpoint.

7.2. Rationalization. On the other hand, the rationalization functor (�)Q : T !

TQ , induced by the completed group ring functor Q̂ : Gp ! Hopf (cf. x4.2(b)), is
spherical but not special (Def. 5.1), and so the theory described here does not apply
as is. In fact, one can see why if one considers the comparison exact sequence for
Q̂ (x4.5(b)): given a (simply-connected) rational space G 2 TQ , for each Q -vector
space �nG, we need an abelian group A = �nX such that A
Q �= �nG, and then
lift the rational k-invariants for X to integral ones. Thus, much of the indeterminacy
for X is algebraic.

7.3. Suspension. The suspension functor � : T� ! T�, induced by the free group
functor F̂ : Set� ! Gp as in x4.2(c), is similar to singular chains, with the generalized
EHP sequence replacing the \certain long exact sequence", and the modi�ed Postniov
systems involve the kernel and image of the suspension homomorphism E : �nX !
�n+1�X.

7.4. Homotopy groups. The motivating example for the treatment in this paper
{ and the only one which requires the full force of Section 6 { is the functor
�� : T� ! �-Alg, prolonged to simplicial spaces (as in as in x4.2(d)). However, even
this case simpli�es greatly if we want to realize a single �-algebra � { that is, we
take G 2 s�-Alg to be the constant simplicial �-algebra B�.
Indeed, given a simplicial space X with ��X ' B� (which implies that ��kXk �=

G), from the spiral exact sequence (4.7) we �nd that �\nX
�= 
n� for all n � 0,

so that hn : �\nX ! �\n��X is trivial for n > 0. We do not need the modi�ed
Postnikov system in this case: the obstructions to realizing � (or G) are just the
classes �n 2 H

n+3(�; 
n+1�), and the di�erence obstructions distinguishing between
the di�erent realizations are Æn 2 Hn+2(�; 
n+1�) (n � 1). See [BDG] and [BJT,
x5] for two descriptions of this case.

7.5. Remark. Our obstruction theory is irrelevant, of course, for the inverse spherical
functor U : G ! S� (see x4.13) { that is, in determining loop structures on a given
topological space. Nevertheless, from (4.17) we can easily recover the well-known fact
that X ' 
Y is a loop space if and only if its k-invariants are suspensions of those
of Y (cf. [AHK]).

7.6. Lifting morphisms. In all of the above examples, one can ask the analogous
question regarding the lifting of maps, or more complicated diagrams, from D to C.
This can be addresses via Theorem 6.8 by transfering the spherical structure from C
and D to the diagram categories CI and DI (cf. x2.11(d)). See [BJT, x8] for a
detailed example.
Note that the k-invariants for a map of chain complexes are not trivial (cf. [D,

(3.8)]), so the theory for realizing chain maps in T� is correspondingly more compli-
cated.
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