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Abstract

In this paper we define the notion of BP infinite loop algebras, a sort of BP -analogue of A-
R-allowable Hopf algebras, and show that under some conditions, BP -cohomology of infinite
loop spaces has such a structure. Furthermore we show that the BP infinite loop algebra
structure gives a serious restriction on underlying unstable BP -algebra structure.
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1. Introduction

It is well-known that the mod p ordinary homology of an infinite loop space has the
structure of a so called A-R-allowable Hopf algebra [13], i.e., an Hopf algebra on which
both the Steenrod algebra and the Dyer-Lashof algebra act satisfying certain compatibility
conditions. What about generalized (co)homology? In the case of the complex K-theory,
the question was more or less solved by McClure in [14]. The rather complicated answer,
however, is due to the presence of torsion elements, and the situation appears to simplify
when dealing with spaces whose integral (p-complete) K-theory has no torsion elements (c. f.
[5, 8]. See also [7] on the relationship between the results of [5] and [14].) In an unpublished
work, N. Strickland deals with En-homology of QX when En-homology of X is free. What
about connective theories? In [10] the author computed BP -cohomology of QX when X
satisfies certain conditions. In this paper we use this computation to give a definition of a
sort of BP - analogue of the category of A-R allowable Hopf algebras, and we will discuss
some properties.

Another purpose of this paper is to exhibit that the unstable BP -cohomology operations
are rather accessible, contrary to a common belief. For this purpose we rely rather heavily on
known results on Steenrod operations and use the relationship between ordinary cohomology
and BP -cohomology.
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The paper is organised as follows. In section 2, we define the category of BP infinite
loop algebras and show that the BP -cohomology of an infinite loop space becomes naturally
a BP infinite loop algebra under some conditions. In section 3 we describe explicitly BP
infinite loop algebra structure of BP -cohomology of some infinite loop spaces. In section 4,
we show that the structure of BP infinite loop algebra imposes a serious restriction on the
structure of the underlying unstable BP -algebra, and show that there is no nontrivial BP
infinite loop algebra with a spherical class in dimension greater than 2 and that is finitely
generated as BP ∗-module. In appendix A we deal with some issues concerning the topology
of BP -cohomology of spaces, and in appendix B we recall some standard facts on BP∗(BP ∗)
for readers who are not familiar with.

The following convention will be used throughout the paper. BP will denote the p-
completed version of the Brown-Peterson spectrum unless otherwise specified, where p will
be a fixed odd prime. For spaces or spectra X, BP ∗(X) will be equipped with the BP -
skeletal topology as will be defined in appendix A unless otherwise specified. However, the
use of BP -skeletal topology instead of the usual skeletal topology is not crucial. In fact it is
only used in Theorem 2.11 ii), and in case of interests the two topologies agree anyway. We
denote H∗(−) and H∗(−) the mod p ordinary cohomology and homology.

2. The definition of BP infinite loop algebras

2.1. BP ∗(BP )-modules, unstable BP - algebras, and the destabilization

Let X be a spectrum, E a generalized cohomology theory with product. It is well-known
(c. f. [1] ) that E∗(X) is a module over the ring of stable cohomology operations E∗E.
Less well-known is the fact that, if X is a space, under certain conditions on E, E∗(X) has
a richer set of structures called unstable E-algebra (c. f. [3]). BP is known to verify the
required condition (loc. cit. ) by results in [25, 19]. In view of recent works by Andrews and
Whitehouse [24], it is not clear if the definition given there is the best one. In any event,
we need following properties of the category of unstable BP -algebras (which we will denote
KBP ) :

i Let X be a space. Then BP ∗(X) is naturally an unstable BP -algebra.

ii The following diagram of functors is commutative

Pointed spaces Spectra

KBP MBP ∗BP

-
Σ∞

?
BP ∗(−)

?
BP ∗(−)

-
I

where I denotes the augmentation ideal functor, andMBP ∗BP the category of BP ∗BP -
modules.
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iii There is a natural isomorphism

HomKBP
(BP ∗(BP n), A) ∼= An

for unstable BP -algebras A.

iv In KBP the categorical sum is represented by a completed tensor product over BP ∗.

v Cokernels exist in KBP .

All of the properties follow easily from the definition of unstable BP -algebras in [3]. These
properties allow us to define

Definition 2.1. The destabilization functorMBP ∗BP → KBP is the left adjoint to the aug-
mentation ideal functor I : KBP →MBP ∗BP .

(here we use the augmentation ideal and not the forgetful functor because we are using
the unreduced theory for spaces).

Note that such a functor transforms the direct sum into the tensor product, is right exact, and
sends ΣnBP ∗(BP ) to BP ∗(BP n). These properties characterize the destabilization functor.
As we know completely algebraically BP ∗(BP n)’s and the induced map among them, our
functor is determined in a completely algebraic way (including the topology/filtration).

2.2. BP infinite loop algebras

In this section we define the category of BP infinite loop algebras, which can be considered
as a some sort of BP counterpart of the category of A-R-allowable Hopf algebras, and show
that indeed when X is a nice infinite loop space, its BP -cohomology has a structure of a
BP infinite loop algebra.

First we recall from [10] the following

Theorem 2.2. Let X be a space satisfying the following conditions.

(H1) BP ∗(X)⊗̂BP ∗Z/p ⊂ H∗(X).

(H2) BP ∗(X) is Landweber-flat, namely the sequence (p, v1, v2, · · · ) is regular on BP ∗(X).

Then the natural map DB̃P
∗
(X)→ BP ∗(QX) is an isomorphism.

Now suppose X itself is an infinite loop space, i.e., X = Ω∞Y for a spectrum Y . Then
by adjunction we get a map of infinite loop spaces QX → X. Thus we get a map of
unstable BP -algebras BP ∗(X) → BP ∗(QX). One can see that this map satisfies several
compatibility conditions coming from the formal properties of adjunction, notably it is a
section of the obvious map BP ∗(QX)→ BP ∗(X). This motivates the following definition :
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Definition 2.3. An BP infinite loop algebrais a coalgebra over the comonad ([12]) associ-
ated to the adjunction pair (D, I), that is, an unstable BP -algebra A equipped with a map of
unstable BP -algebras ξA : A→ DI(A) making the following diagrams commutative

A DI(A) A

DI(A) DIDI(A) DI(A) A

-
ξA

?

ξA

?
D(φIA)

?

ξA

Q
Q

Q
Q

Q
QQs

id

-
DI(ξA)

-
ϕA

where φ : id → ID and ϕ : DI → id are the adjunction maps. Often by abuse of language
we say simply that A is a BP infinite loop algebra.

Thus the above discussion leads to :

Theorem 2.4. Let X be an infinite loop space satisfying the properties (H1) and (H2).
Then BP ∗(X) is a BP infinite loop algebra.

Before we study the structure of BP infinite loop algebras, we need to know more on
the structure of unstable BP -algebras obtained by the destabilization. The first results are
more or less formal :

Proposition 2.5. Let M be a BP ∗(BP )-module. Then

(i) D(M) is naturally a completed Hopf algebra.

(ii) There is a composition copairing

D(M)→ D(M)⊗̂BP ∗D(BP ∗(S0))

which agrees with the map induced by the composition pairing map

Proof. The diagonal map M → M ⊕M induces a map D(M) → D(M)⊗̂BP ∗D(M) which
makes D(M) a completed coalgebra. One easily sees that the coproduct is compatible with
product. This proves i). The assertion ii) is a special case of the following :

Lemma 2.6. Let L, M , and N be BP ∗(BP )-modules with a map L → M⊗̂BP ∗N . Then
we have a natural map D(L)→ D(M)⊗̂BP ∗D(N).

Proof. By adjunction we have natural maps M → ID(M) and N → ID(N), which give
rise to a map M⊗̂BP ∗N → ID(M)⊗̂BP ∗ID(N) ∼= I(D(M)⊗̂BP ∗D(N)). By composing with
the map L→M⊗̂BP ∗N we get a map L→ I(D(M)⊗̂BP ∗D(N)). By adjunction we get the
desired map. 2

We can also relate them to ordinary homology, we start with :

Proposition 2.7. Let A be an object in KBP . Then A⊗̂BP ∗Z/p has a natural structure of
unstable algebra over Ap, the mod p Steenrod algebra with trivial action of the Bockstein.
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Proof. Let P i be the Steenrod power operation. It is well-known that there is a stable
BP -operation Θi which covers P i ([29]). Let M be an object in MBP ∗BP . Since the ideal
I(∞) = (p, v1, · · · , vn) is invariant under the action of BP ∗BP ([11]) one sees that one can

let the subalgebra of Ap generated by P i’s on M⊗̂BP ∗Z/p via the formula P i(x) = Θi(x).
Now let A be an unstable BP -algebra. We have already seen that Ap acts on A⊗̂BP ∗Z/p
(with trivial action of Bockstein). Let x be an element of degree k in A⊗̂BP ∗Z/p. We will
show that if k < 2i then P i(x) = 0. Consider Θi(ιk) where ιk ∈ BP k(BP k) is the class
corresponding to the identity map. As P i(ιk) = 0 in HZ/p∗(BP k)⊗BP ∗(BP k)⊗̂BP ∗Z/p,
and since BP ∗(BP k) is generated by ιk as an unstable BP-algebra, we see that there is a
series of element Θi

j ∈ BP ∗(BP k) such that

Θi(ιk) = pΘi
0(ιk) + · · ·+ vnΘi

n(ιk) · · · .

By the universality of ιk we get

Θi(x) = pΘi
0(x) + · · ·+ vnΘi

n(x) · · ·

for any x in degree k part of an unstable BP-algebra. Therefore we have

P i(x) = Θi(x) = 0.

Other conditions can be verified in a similar way. 2

As a corollary, we can recover the following result originally due to Quillen ([18]).

Corollary 2.8. Let A be an unstable BP -algebra. Then A⊗̂BP ∗Z/p is trivial in negative
degrees.

Proof. It suffices to note that id = P 0 = 0 in negative degrees for an unstable Ap-algebra.
2

Now we can prove

Proposition 2.9. Let M be a BP ∗(BP )-module. Then D(M)#
∼= HomZ/p(D(M)⊗̂BP ∗Z/p, Z/p)

has a natural structure of A-R-allowable Hopf algebra.

Proof. All of the structure has been already shown to exist except the action of the Dyer-
Lashof algebra ([13]). To see this, let M ← P0 ← P1 be a BP ∗(BP )-module presentation
of M . Thus we have a coexact sequence of algebras (which also is an exact sequence of
completed Hopf algebras in view of results above) BP ∗ ← D(M)← D(P0)← D(P1). As the
tensor product is right exact we see that D(M)⊗̂BP ∗Z/p is the cokernel (as algebras/Hopf
algebras) of the map D(P0)⊗̂BP ∗Z/p← D(P1)⊗̂BP ∗Z/p. By dualizing we see that D(M)# is
the Hopf kernel of the map D(P0)# → D(P1)#. Since D(Pi)#’s are just mod p homology of
the infinite loop spaces associated to a free BP -module spectra, and the maps between them
are induced by a spectra map, we see that the kernel has the strucutre of an A-R-allowable
Hopf algebra. 2

Remark 2.10. Note that one can identify N# with the set of continuous BP ∗-linear maps
from N to Z/p.
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With these preparations we are now ready to study properties of BP infinite loop alge-
bras. As a matter of fact we get all the properties of D(M)’s that we have seen, namely

Theorem 2.11. Let A be an BP infinite loop algebra.

(i) A is a completed Hopf algebra, and the structure map ξA is a map of completed Hopf
algebras.

(ii) The category of BP infinite loop algebras is abelian.

(iii) There is a natural “composition copairing”

A→ A⊗̂BP ∗D(BP ∗(S0))

and ξA commutes with the copairing.

(iv) A⊗̂BP ∗Z/p is an A-R-allowable Hopf algebra.

Proof. Basic idea is to use the fact that these properties hold for D◦ I(A), and the fact that
A embeds naturally into D ◦ I(A). One can use the composition

A→ D ◦ I(A)→ D ◦ I(A)⊗̂BP ∗D ◦ I(A)→ A⊗̂BP ∗A

to define the coproduct. Unfortunately with such a definition of the coproduct, it is not
obvious that the structure map commutes with the coproduct. To see this, first consider the
case when A = D(M). We show that the coproduct defined earlier agrees with the new one,
which proves the compatibility of the coproduct with the structure map in the general case
by naturality. To prove that the two coproducts agree, we need to show the commutativity
of the following square.

D(M) DID(M) D(ID(M)⊕ ID(M)) DID(M)⊗̂BP ∗DID(M)

D(M ⊕M) D(M)⊗̂BP ∗D(M)

-

?

- -

?
-

��������������������:

The top left triangle commutes by naturality and the bottom pentagon commutes by gener-
alities of adjunctions. The part ii) follows immediately in view of the appendix A. Note that
without using the properties of the BP -skeletal topology, we still get all of the properties
of the abelian category except the equality between the image and the coimage. The part
iii) can be proved by a method similar to the part i). To prove the part iv), notice that
the functor ⊗̂BP ∗Z/p transforms our composition copairing into the composition pairing
H∗(QS0) ⊗ A⊗̂BP ∗Z/p → A⊗̂BP ∗Z/p. As one can recover the action of the Dyer-Lashof
algebra from the composition pairing and the action of the Steenrod algebra, we can make
the Dyer-Lashof algebra act on A⊗̂BP ∗Z/p. All the compatibility conditions are satisfied
because they are satisfied on DI(A)⊗̂BP ∗Z/p which surjects to A⊗̂BP ∗Z/p. 2
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3. Examples of BP infinite loop algebras

3.1. The adjunction maps

In this section we will exhibit explicitly the structure of BP infinite loop algebra for
some known BP -cohomology of infinite loop spaces. We start with the simplest case when
the structure maps can be obtained from the adjunction maps, especially for BP ∗(BP n) ∼=
D(ΣnBP ∗(BP )) or BP ∗(QX) ∼= DI(BP ∗(X)) with BP ∗(X) satisfying the conditions (H1)
and (H2) of Theorem 2.2. So we explain how to describe algebraically the adjunction map.
Let’s first consider the adjunction idMBP∗BP

→ I ◦D. By the construction of D, the general
cases can be reduced to the case when M is free and monogenic, i.e., M is of the form M =
ΣnBP ∗(BP ), in which case the adjunction map ΣnBP ∗(BP ) ∼= BP ∗(ΣnBP )→ BP ∗(BP n)
is obtained by considering a stable operation as an unstable operation, in other words by
evaluating a stable operation on the class ιn ∈ BP ∗(BP n).

Next let’s consider the adjunction D◦ I → idKBP
. For the ease of the description we only

deal with the case of BP -cohomology of a space, the general case being left to the reader.
Consider a free BP ∗BP -resolution of IBP ∗(X) realized by maps X → P0 → P1 → · · ·

where Pi’s are wedge of suspensions of BP . Thus BP ∗(X) is a quotient of BP ∗(P0) and
DI(BP ∗(X)) that of D(BP ∗(P0)) ∼= BP ∗(Ω∞P0). As we are supposed to know BP ∗(X) as
an object of KBP , we know how BP -unstable operations act on it, and thus we can extend
the map BP ∗(P0) → IBP ∗(X) to D(BP ∗(P0)) → BP ∗(X). One verifies easily that by
passing to the quotient, we get the desired map DI(BP ∗(X))→ BP ∗(X).

3.2. Wilson spaces

Let’s examine now the case of so-called Wilson spaces, namely the spaces of the form
BP 〈i〉

j
with j ≤ 2(1 + p + · · · pi), which splits off BP j ([26, 4, 3]), that is we have a map of

spaces θ : .BP 〈i〉
j
→ BP j such that the composition with the usual map ρij

: BP j → BP 〈i〉
j

is homotopic to the identity. We shall prove

Proposition 3.1. Let j ≤ 2(1 + p + · · · pi). Then the structure map

ξBP ∗(BP 〈i〉
j
) : BP ∗(BP 〈i〉

j
)→ DI(BP ∗(BP 〈i〉

j
))

is given by the composition

BP ∗(BP 〈i〉
j
)

BP ∗(θ)→ BP ∗(BP j)
ξBP∗(BP j)

→ DI(BP ∗(BP j))
DI(BP ∗(ρij

)

→ DI(BP ∗(BP 〈i〉
j
)).

Proof. It suffices to take the adjoint of the commutative diagram

BP ∗(BP 〈i〉
j
) BP ∗(BP 〈i〉

j
)

BP ∗(BP j)

� id

�����HHHHY

Note that each of theses arrows can be described completely algebraically (c. f. [3, 4] for
BP ∗(θ)), which means that we have a completely algebraic description of ξBP ∗(BP 〈i〉

j
).
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3.3. Eilenberg-Maclane spaces

The Brown-Peterson cohomology of the Eilenberg-Maclane spaces were calculated in [20].
For concreteness’ sake, we will deal with the case of K(Z/p, n)’s, but the other cases are
similar. According to [20], there are maps of infinite loop spaces

K(Z/p, n)→ K(Z, n + 1)→ BP 〈1〉
n+2p

→ · · · → BP 〈n− 1〉
2(1+p+···+pn−1)

which induces the surjection BP ∗(BP 〈n− 1〉
2(1+p+···+pn−1)

) → BP ∗(K(Z/p, n)). As this is

a map of BP infinite loop algebra, we deduce

Proposition 3.2. ξBP ∗(K(Z/p,n) is determined by the commutative diagram

BP ∗(BP 〈n− 1〉
2(1+p+···+pn−1)

) BP ∗(K(Z/p, n))

DI(BP ∗(BP 〈n− 1〉
2(1+p+···+pn−1)

)) DI(BP ∗(K(Z/p, n)))

-

?

ξBP∗(BP 〈n−1〉
2(1+p+···+pn−1)

)

?

ξBP∗(K(Z/p,n))

-

4. Finitely generated BP infinite loop algebras

In this section we will see how the structure of BP infinite loop algebra gives restrictions
on the structure of the underlying unstable BP -algebra structure. Let’s first see what
happens if X is an infinite loop space with torsion-free cohomology. (It happens that by a
work of Slack [21] we know all of them, but let’s forget if for the time being.) Suppose also X
is n− 1 connected, but not n-connected. Thus we have the following commutative diagram.

Sn QSn

X QX X K(Z/p, n)

BP n

-

? ?
- - -

?�
�

�
�

���

Here the composition of maps all the way from Sn to K(Z/p, n) gives a generator of Z/p.
Such a space X satisfies clearly the conditions (H1) and (H2), thus by taking BP -cohomology
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we get the following diagram

BP ∗(Sn) DI(BP ∗(Sn))

BP ∗(X) DI(BP ∗(X)) BP ∗(X)

�

6 6

� �
ξBP∗(X)

where the composition from BP ∗(X) to BP ∗(Sn) is surjective. This motivates the following
definition.

Definition 4.1. Let A be an unstable BP -algebra. We say that A has a spherical class in
degree n if There is a surjective map of unstable BP -algebras from A to BP ∗(Sn).

Remark 4.2. By the above, we see that if X is an infinite loop space with torsion-free
cohomology then BP ∗(X) has a spherical bottom in degree n.

Now we are ready to state our main result.

Theorem 4.3. Let X be an unstable BP -algebra with a spherical class in dimension n. If
n ≥ 3 then A⊗̂BP ∗Z/p is not bounded above. In particular A is not finitely generated as
BP ∗-module.

Proof. The key point is the following

Proposition 4.4. Let A be as above. Then ∃a ∈ HomZ/p(A⊗̂BP ∗Z/p, Z/p)n such that

{
Q1(a) 6= 0 if n is odd
Q2(a) 6= 0 if n is even

Granted Proposition, we can conclude the proof of Theorem 4.3 using the following

Lemma 4.5. Let M be an A-R-allowable module ([13], Definition 2.8), and x ∈ M be an
element such that P i′(x) = 0 for ∀i > 0, ∃j > 0 such that Qj(x) 6= 0. Then we have
Qpj(x) 6= 0. We use the notation P i′ rather than the more usual P i∗ to keep the notation θ∗

for the maps induced by θ.

Proof. By Nishida relation ([13, 16]), we have P (p−1)j′Qpj(x) = Qj(x). 2

Now we go back to the proof of Proposition. First we need to know the action of Q1 and
Q2 on the bottom class of H∗(BP n). Denote ιn the element of Hn(BP n) which is the image
of the unit map in πn(BP n) by the Hurewicz map.

Lemma 4.6. (i) Let n ≥ 0. In H∗(BP 2n+1) we have

Q1(ι2n+1) = −e1 ◦ [v1] ◦ b◦p−1
1 ◦ b◦np .
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(ii) Let n ≥ 1. In H∗(BP 2n) we have

Q2(ι2n) = −[v1] ◦ b◦p−1
1 ◦ b◦np .

Proof. Basically in [19], Theorem 6.1, the action of Qi’s on ιn was determined, and their
result was extended by Turner ([23]) for the action of Qi’s on any element of H∗(BP ∗).
However here we present a simpler proof in the spirit of [25]. First of all we have

−e1 ◦ (e1 ◦ [v1] ◦ b◦p−1
1 ◦ b◦np ) = −[v1] ◦ b◦p1 ◦ b◦np (as e1 ◦ e1 = b1)

= (b?p
1 ) ◦ b◦np (by main relation, see appendix B )

= (b1 ◦ b◦n1 )?p (the distributivity, see B )

= ι?p
2n+1

= e1 ◦Q1(ι2n+1) (property of Dyer-Lashof operations)

We also know that the map e1◦ : H∗(BP 2n+1)→ H∗+1(BP 2n+2) factors through QH∗(BP 2n+1),
and by [25] we have PH∗(BP 2n+1)

∼= QH∗(BP 2n+1) ↪→ H∗+1(BP 2n+2). Thus we get i) since

both Q1(ι2n+1) and −e1 ◦ [v1] ◦ b◦p−1
1 ◦ b◦np map to ι?p

2n+1. To prove ii), note that the map
e1 ◦ : QH∗(BP 2n+1) → PH∗+1(BP 2n+2) is also injective ([25]). Furthermore, the kernel of
the map PH∗(BP 2n)→ QH∗(BP 2n) consists of the p-th powers. Since QH∗(BP 2n) is trivial
if ∗ ≤ 2n + 2(p− 1) unless ∗ = 0 or 2n, we see that in degree |Q2(ι2n)| = 2np + 4(p− 1), the
map PH∗(BP 2n)→ QH∗(BP 2n) is bijective. Thus we derive ii) from i). 2

These elements have an interesting property. Let θ be an element of BP 2n+ε(BP 2n+ε),
ε = 1, 2. If θ comes from a stable map, then we clearly have

θ∗(Qει2n+ε) = Qε(θ∗ι2n+ε) = aQει2n+ε

for some a ∈ Z/p. It turns out that this still is the case with unstable maps θ, namely

Proposition 4.7. Let θ ∈ BP 2n+ε(BP 2n+ε), ε = 1, 2, 2n+ε ≥ 1. Then in Hp(2n+ε)−ε(BP 2n+ε)
we have

∃a ∈ Z/p, such that θ∗(Qει2n+ε) = aQει2n+ε modulo decomposables.

Proof. We only deal with the case ε = 1, the other case being similar. Denote by s1 and σ1

the fundamental classes in BP 1(S1) and BP1(S
1) respectively. We then have

θ∗(−Q1ι2n+1) = θ∗(e1 ◦ [v1] ◦ b◦p−1
1 ◦ b◦np )

= θ∗((v1s
1x1 · · ·xp−1xp · · ·xp+n−1)∗(σ1 ⊗

p−1 factors︷ ︸︸ ︷
β1 ⊗ · · · ⊗ β1⊗

n factors︷ ︸︸ ︷
βp ⊗ · · · ⊗ βp))

= (θ(v1s
1x1 · · ·xp−1xp · · ·xp+n−1))∗(σ1 ⊗

p−1 factors︷ ︸︸ ︷
β1 ⊗ · · · ⊗ β1⊗

n factors︷ ︸︸ ︷
βp ⊗ · · · ⊗ βp)

So we can conclude that θ∗(Q1ι2n+1) lies in the coalgebraic subring of H∗(BP ∗) generated by
e1, b1 and bp over Z/p[BP ∗]. Denote B this coalgebraic subring. Let y ∈ PHp(2n+1)−1(BP ∗)∩
B. Then for degree reasons y is a linear combination of elements of the form

[α] ◦ e1 ◦ b◦p−1+jp
1 ◦ b◦n−j

p with [α] ∈ BP 2(1+j)(p−1).
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Consider e1 ◦ y = [α] ◦ b◦p+jp
1 ◦ b◦n−j

p . Suppose vi divides α. Then 1 + j ≥ 1 + p + · · · pi−1, so
by Lemma B.4, e1 ◦ y is decomposable. Since α has to be divided by some vi, we see that
e1 ◦ y is decomposable. As in the proof of Lemma 4.6, we see that y is a multiple of Q1ι2n+1.
Combining everything together, we get the desired result. 2

We also need to know some particularity of unstable BP -operations that are “dual” to
these Dyer-Lashof operations. Denote ρ the obvious map BP → HZ/p. Note that ρ can
also be considered as an element of Hn(BP n) that is dual to ιn. Then we have

Proposition 4.8. (i) Let n ≥ 2, θ1 ∈ BP 2n(BP 2n), θ2 ∈ BP (2n+2)p−2(BP 2n) such that

< ρ(θ2), Q2(ι2n) > = 1
< ρ(θ1), ι2n > = 1.

Then we have < ρ(θ2 ◦ θ1), Q2(ι2n) >= 1.
(ii) Let n ≥ 1, θ1 ∈ BP 2n+1(BP 2n+1), θ2 ∈ BP (2n+2)p−1(BP 2n+1) such that

< ρ(θ2), Q1(ι2n+1) > = 1
< ρ(θ1), ι2n+1 > = 1.

Then we have < ρ(θ2 ◦ θ1), Q1(ι2n+1) >= 1.

Remark 4.9. (i) An analogous fact holds for any stable operations, since BP ∗(BP ) is
generated as a topological algebra by operations that cover Steenrod reduced powers.

(ii) Let θ1 ∈ BP 1(BP 1) be the splitting map BP 1 → S1 → BP 1, θ2 ∈ BP 2p−1(BP 1) be
any element with < ρ(θ2), ι1 >= 1. Then we have < ρ(θ1), ι1 >= 1, but θ2 ◦ θ1 = 0 as
BP 2p−1(S1) = 0, so an analogous statement doesn’t hold for BP 1.

Proof. We have
< ρ(θ), ιk >=< θ∗(ρ), ιk >=< ρ, θ∗(ιk) >

which implies that
< ρ(θ), ιk >= 1⇐⇒ θ∗(ιk) = ιk.

Similarly we have

< ρ(θ), Qε(ι2n+ε) >= 1⇐⇒ θ∗(Qε(ι2n+ε)) = (ι(2n+2)p−ε)

so it suffices to show that θ∗(ι2n+ε) = ι2n+ε implies θ∗(Qε(ι2n+ε)) = Qε(ι2n+ε) for ε = 1, 2. To
prove this, we consider the induced map in BP -homology. As it is a map of BP ∗(BP )-
modules, we can use the action of BP ∗(BP ). Recall HZ/p∗(HZ/p) ∼= Λ(q1, q2, · · · ) ⊗
P [ξ1, ξ2, · · · ], and denote Pn∆1 the element of dual polynomial basis (the Milnor basis [15])
dual to ξn

1 . Let rn∆1 ∈ BP ∗(BP ) be as in [29]. We know that its coproduct is given by
∆(rn∆1) = Σkrk∆1 ⊗ r(n−k)∆1

and that the following diagram commutes

BP BP

HZ/p HZ/p

-
rn∆1

?

ρ

?

ρ

-
Pn∆1
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(According to [29], Proof of Lemma 3.7, we get χ(Pn∆1) instead of Pn∆1 , but as χ(ξ1) = ξ1, χ
being an algebra map we have χ(ξn

1 ) = ξn
1 so χ(Pn∆1) = Pn∆1 . ) The operation Pn∆1 is known

to coincide with the Steenrod reduced power P n, so for spaces X, we have P ′
n∆1

(x) = 0 if
x ∈ H∗(X) with ∗ ≤ pn and P ′

n∆1
(x) = V (x) where V is the Verschiebung (and ′ denotes

the action in homology). Now we have

Lemma 4.10. (i) Let n ≥ 1. In BP∗(BP 2n+1)/p we have r′n∆1
(e1 ◦ [v1] ◦ b◦p−1

1 ◦ b◦np ) =
v1ι2n+1.

(ii) Let n ≥ 2. In BP∗(BP 2n)/p we have r′n∆1
([v1] ◦ b◦p−1

1 ◦ b◦np ) = v1ι2n+1.

Proof. We see easily that r′n∆1
(e1 ◦ [v1] ◦ b◦p−1

1 ) = 0 so by the Cartan formula we get

r′n∆1
(e1 ◦ [v1] ◦ b◦p−1

1 ◦ b◦np ) = e1 ◦ [v1] ◦ b◦p−1
1 ◦ r′n∆1

(b◦np ).

We also see that r′1∆1
(bp) = b1 modulo [p], p, and ?-decomposables. Since [p] ◦ e1 = pe1, and

e1 ◦ (−) kills the decomposables, we get the equality i) using the lemma B.5. The proof of
ii) is similar and omitted. 2

Now we can finish the proof of Proposition 4.8. Note that by the naturality of all
structures of coalgebraic rings, all named elements in H∗(BP ∗) is the image of the ele-
ments with same name in BP∗(BP ∗). Let θ be an element of BP 2n+1(BP 2n+1) such that
H∗(θ)(ι2n+1) = ι2n+1 (from now on, we use notations H∗(θ) and BP∗(θ) instead of θ∗ to avoid
confusion). Then we have also BP∗(θ)(ι2n+1) = ι2n+1 modulo p. Note that as in the proof of
Proposition 4.7 we see that BP∗(θ)(ι2n+1) lies in the coalgebraic subring generated by e1, b1

and bp over BP∗[BP ∗]. With a little more careful analysis, we see also that modulo decom-
posables it has to lie in the image of the circle multiplication with e1◦ [v1]◦bp−1

1 . Denote by C
the sets of BP∗-linear combinations of the elements of the form e1 ◦ [v1]◦ bp−1

1 ◦ [α]◦ b◦j01 ◦ b◦j1p

in QBP(2n+1)p−1(BP 2n+1). For degree reasons |α| 6= 0| unless j0 = p − 1 and j1 = n. The
proof of Proposition 4.7 shows us that the elements of [I2] ◦BP∗(BP ∗) ∩ C is in the kernel
of ρ. Thus we have

Ker(ρ|C) = C ∩ ([I2] ◦BP∗(BP ∗) + p〈e1 ◦ [v1] ◦ bp−1
1 ◦ b◦np 〉)

⊂ C ∩ ([I2] ◦BP∗(BP ∗) + I[I] ◦BP∗(BP ∗) + I2BP∗(BP ∗))

where 〈a〉 denotes the submodule generated by a. However, [I2] ◦ BP∗(BP ∗) + I[I] ◦
BP∗(BP ∗) + I2BP∗(BP ∗) is invariant under r′n∆1

, so from

r′n∆1
(BP∗(θ)(e1 ◦ [v1] ◦ b◦p−1

1 ◦ b◦np )) = BP∗(θ)(r′n∆1
(e1 ◦ [v1] ◦ b◦p−1

1 ◦ b◦np ))

= BP∗(θ)(v1ι2n+1)

= v1ι2n+1

we deduce that

r′n∆1
(BP∗(θ)(e1 ◦ [v1] ◦ b◦p−1

1 ◦ b◦np )) = e1 ◦ [v1] ◦ b◦p−1
1 ◦ b◦np modulo Kerρ.

Thus we have the desired result. 2
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Remark 4.11. The case of BP 2(BP 2) deserves a little discussion. Lemma 4.10 ii) almost
holds, with an extra term ι?p

2 on the right hand side. As θ doesn’t have to be additive,BP∗(θ)
doesn’t commute with the ? product, so BP∗(θ)(ι

?p
2 ) is not necessarily a decomposable element,

and as a matter of fact it can be equal to v1ι2.

The proof of Proposition 4.4 can be concluded as follows. We treat the case when n
is odd, the case n is even is left to the reader. Take an element α ∈ A that maps to a
generator BP n(Sn). Consider the element D(u)(ξA(α)) ∈ D(BP ∗(Sn)) ∼= BP ∗(QSn). By
the hypothesis on α it maps to a generator in BP n(Sn), so it also maps to a generator in
Hn(QSn). Therefore, ∃θ1 ∈ BP n(BP n) such that

(i) D(u)(ξA(α)) = τ ∗(θ1) = θ1(τ) where τ : QSn → BP n is the unit map.
(ii) ρ(θ1) ∈ Hn(BP n) is a generator.

We can suppose that < ρ(θ1), ιn >= 1, multiplying α with a unit if necessary. Now choose
an element θ2 ∈ BP ∗(BP n) as in Proposition 4.8. Given an unstable BP -algebra B, denote
by <, > the pairing B ×HomZ/p(B⊗̂BP ∗Z/p; Z/p)→ Z/p. Then we have

< θ2θ1(τ), Q1(σn) > = < τ ∗(θ2θ1), Q1(σn) >

= < (θ2θ1), τ∗Q1(σn) >

= < (θ2θ1), Q1(ιn) > as τ is a map of infinite loop space

= 1 by Proposition 4.8

But we also have

< θ2θ1(τ), Q1(σn) > = < θ2(D(u)(ξA(α))), Q1(σn) >

= < θ2(α), ξA#D(u)#(Q1(σn)) >

= < θ2(α), Q1(ξA#D(u)#(σn)) >

as ξ and D(u) are maps of BP infinite loop algebras. This concludes the proof of Proposition
4.4. 2

Remark 4.12. Here we see some of the difficulties of dealing with the generalized cohomol-
ogy theories. First of all unlike the case of BP -homology (which is connective), the existence
of spherical class is not guaranteed at all in BP -cohomology of a space. Secondly, it is tempt-
ing to consider our arguments above as some sort of refinement of Nishida relations, and to
state an equality like r′n∆1

Q1 = −v1id. Unfortunately it is not clear at all on what kind of
algebraic structure this equality makes sense.

To conclude, we show that one can use Proposition 4.4 to get some restrictions on the
homotopy type of infinite loop spaces. For example,

Corollary 4.13. Let X be a (n − 1)-connected space with H∗(X; Z(p)) is free over Z(p),
Hn(X; Z(p)) 6= 0 and Hp(n+ε)−ε(X; Z(p)) ∼= 0 where ε = 1 if n is odd and 2 if n is even. Let
G∗ be a torsion abelian graded group of finite type such that Gm

∼= 0 unless 2(1+p+· · ·pm) ≥
(p− 1)(n + ε). Then the product space X ×K(G∗, ∗) doesn’t have the homotopy type of an
infinite loop space.
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Proof. By [20] K(G∗, ∗) satisfies the conditions (H1) and (H2), and we have BP ∗(X ×
K(G∗, ∗)) ∼= BP ∗(X)⊗̂BP ∗BP ∗(K(G∗, ∗)), thus X × K(G∗, ∗) also satisfies the conditions
(H1) and (H2). On the other hand according to [20], BP ∗(K(G∗, ∗))⊗̂BP ∗Z/p ∼= 0 in degrees
less than 2(1 + p + · · ·pm−1). Thus BP ∗(X × K(G∗, ∗))⊗̂BP ∗Z/p is trivial in the degree
p(n+ ε)− ε. Thus by Proposition 4.4 it can’t have a structure of a BP infinite loop algebra.

2

A. Topologies on BP ∗(X)

One of the technical difficulties concerning the BP -cohomology is the issue of its topol-
ogy. That is, quite often while dealing with the BP -cohomology of an infinite dimensional
complex, one would like to consider infinite sums, which means that we need a topology. The
traditional solution is tu use the “classical” skeletal topology, that is the topology associ-
ated to the filtration given by F s(BP ∗(X)) ∼= Ker(BP ∗(X)→ BP ∗(sks−1X)). It turns out
that this topology is nice enough so that it has become the default topology to work with.
Unfortunately it also has several draw-backs, notably the lack of the rigidity. That is, for
example, if f : BP ∗(X) → BP ∗(Y ) is a continuous homomorphism of BP ∗-modules, then
it is not clear whether the topology on Im(f) induced by that of the topology of BP ∗(Y )
agrees with the quotient topology. In [10] one approach to settle this was attempted, unfor-
tunately it requires the ordinary cohomology as a part of initial data, and we certainly don’t
want to use such an approach to deal with general problems involving unstable BP -algebras,
even though in practice we are only interested in BP -cohomology of spaces or spectra whose
ordinary cohomology is known.

Tamanoi, on the other hand, used another natural topology called BP -topology in [22],
and showed that it has some nice properties. Unfortunately his topology is too fine for
our purpose. For example, a sum of the form Σi(v1)

ix(p−1)i with x ∈ BP 2(CP∞) doesn’t
converge in this topology. Consequently BP ∗(CP∞)⊗̂BP ∗Z/p where the completed tensor
product is taken with respect to the BP -topology doesn’t inject to H∗(CP∞; Z/p).

There also are several other natural topology on BP ∗(X), arising from its algebraic
structure. In [28], Yamaguchi mentions the “skeletal topology”, which we will refer to as
“algebraic skeletal topology” to distinguish from the classical skeletal topology. With this
topology Σi(v1)

ix(p−1)i converges. However, a homogeneous sum of the form Σiviyi doesn’t
converge. Now we notice that the problems of convergence we have with the BP -topology
and with the algebraic skeletal topology are complementary. That is, with the BP -topology,
the non-convergence comes from the high powers of the ideal (v1, · · · , vn) whereas with the
algebraic skeletal topology the problem comes from the presence of vn’s with infinitely many
n’s. This motivates us to consider the intersection of the two topologies, which we will call
the BP -skeletal topology. It turns out that it agrees with the classical skeletal topology in
many cases of interest, and it also has a good rigidity. We will discuss the details in the rest
of this appendix.

We start with some definitions.

Definition A.1. Let X be a space or spectrum.
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(i) The BP -topology on BP ∗(X) is the topology defined by the decreasing filtration

BP k(X) = F ′−1(X) ⊃ F ′0(X) ⊃ · · · ⊃ F ′n(X) = Ker(BP k(X)→ BP 〈n〉k(X)) ⊃ · · · .

Note that we complete BP at p, so we will do the same with BP 〈n〉.
(ii) The algebraic skeletal topology on BP ∗(X) is defined by the decreasing filtration

F ′′n(BP k(X)) is the submodule generated by ∪i≥n BP k+i(X).

(iii) The classical skeletal topology on BP ∗(X) is defined by the filtration

F s(BP ∗(X)) ∼= Ker(BP ∗(X)→ BP ∗(sks−1X)).

(iv) The BP -skeletal topology on BP ∗(X) is the intersection of the BP -topology and the
algebraic skeletal topology, in other words it is the topology defined by the fundamental
system of neighbourhood of 0 {F ′n(BP ∗(X)) + F ′′m(BP ∗(X))}.

Now, according to [22] Proposition 2.8, the BP -topology is finer than the classical skeletal
topology. It is clear that the algebraic skeletal topology is finer than the classical skeletal
topology. Thus the BP -skeletal topology is finer than the classical skeletal topology, too.
We prove a partial inverse, namely

Theorem A.2. Let X be a space satisfying the conditions (H1) and (H2) of Theorem 2.2.
Then the BP -skeletal topology on BP ∗(X) agrees with the classical skeletal topology.

Proof. We start with the simplest case, when BP ∗(X) is topologically free. In this case we
don’t need X to be a space, the proof will be valid when X is a spectrum as well. Let {xi}
be a topological basis of BP ∗(X) with respect to the classical skeletal topology. Thus all
elements of BP ∗(X) can be written uniquely as

x =
∑

i

αixi, with |αi|+ |xi| = |x|, xi ∈ F |xi|(BP ∗(X)).

Now fix n. Note that BP 〈n〉∗ ∼= Ẑp[v1, · · · vn] is a Noetherian ring, so the ideal {f ∈
BP 〈n〉∗, |f | ≤ l} is finitely generated. Call the generators f1, · · · , fm. Now, one can rewrite
the sum as

x =
∑

i

α′
ixi +

∑
i

α′′
i xi where α′

i ∈ BP 〈n〉∗, α′′
i ∈ Ker(BP ∗ → BP 〈n〉∗).

Suppose x ∈ F |x|+l(BP ∗(X)). Then we have |α′
i| ≥ l, so each α′

i can be rewritten as linear
combination of f1, · · · , fm. Thus the first sum is contained in F ′′l(BP ∗(X)). Obviously the
second sum is in F ′n(BP ∗(X)), so we get F d+l(BP d(X)) ⊂ F ′n(BP d(X)) + F ′′l(BP d(X)).
Thus the BP -skeletal topology is coarser than the classical skeletal topology as desired.

Now we will deal with the general case. According to the proof of Theorem 1.20 of
[20], the minimum set of generators of BP ∗(X) also generates the E∞-term of the Atiyah-
Hirzebruch spectral sequence H∗(X, BP ∗) → BP ∗(X). Thus any element of BP ∗(X) can
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be represented in the E∞-term of the Atiyah-Hirzebruch spectral sequence by an element of
the form x =

∑
i αixi, with |αi| + |xi| = |x|, and xi’s are in E∗,0

∞ . The rest of the argument
is similar.

The prototype case of the second situation is as follows. Consider the Atiyah-Hirzebruch
spectral sequence H∗(BZ/p, BP ∗) → BP ∗(BZ/p). We have E2

∼= E∞ ∼= BP ∗/p[[x]], and
BP ∗(BZ/p) ∼= BP ∗[[x]]/([p](x)) where [p]x = px+ v1x+ · · · . In BP ∗(BZ/p), the element x
has filtration 2, however px = −v1x+ · · · has filtration 2p. In the Atiya-Hirzebruch spectral
sequence, px = 0 and it is represented by −v1x+· · · , which, indeed, has the correct filtration.

2

Remark A.3. It is not clear if the condition (H2) is really necessary here, as we know
from [20] that the Atiyah-Hirzebruch spectral sequence for BP ∗(X) behaves more or less
reasonably.

Of course, the interest of defining a new topology is not that it agrees with an old one, but
that it has something new to offer, in our case the rigidity. Note that the algebraic skeletal
topology is completely algebraic. We show that for a space X, if we take into account
unstable operations, the BP -topology on BP ∗(X) is determined by its algebraic structure.
Fix d. Let n be a positive integer such that 2(1 + · · · pn) > d. Then using the H-space
splitting BP 〈n〉

d
→ BP d ([25, 4]), we get an operation θd,n : BP d → BP d such that

x ∈ Ker(BP d(X)→ BP 〈n〉d(X)) if and only if θd,n(x) = x.

Thus the the BP -topology on BP ∗(X) is determined by the action of θd,n’s and the abelian
group structure. As the algebraic skeletal topology on BP ∗(X) is determined by the (dis-
crete) BP ∗-module structure, we see that the BP -skeletal topology on BP ∗(X) is deter-
mined by its underlying (discrete) algebraic structure. Furthermore our argument apply to
any unstable BP -algebra. Putting them altogether, we have proven :

Theorem A.4. An unstable BP -algebra admits a natural inherent topology TBP such that

(i) TBP is finer than the “classical skeletal topology”.
(ii) TBP agrees with the classical skeletal topology on BP ∗(X) where X is a space satisfying

the conditions (H1) and (H2) in Theorem 2.2.
(iii) TBP on an unstable BP -algebra A depends only on the “algebraic structures” on A.

More precisely, let A and A′ be unstable BP -algebras, and f : A → A′ a homo-
morphism of BP ∗-modules that commutes with all unstable operations. Then f is a
homeomorphism (with respect to TBP).

Thus, for example, we have

Corollary A.5. The category of completed unstable BP -Hopf algebras equipped with TBP
(instead of the default topology) is abelian. Here a completed unstable BP -Hopf algebra
means an unstable BP -algebra A equipped with the diagonal A→ A⊗̂BP ∗A which is a map
of unstable BP -algebras.

Proof. It is easy to see that the standard proof of the fact that the category of Hopf algebras
is abelian applies. The only issue would be the uniqueness of the topology on the image, but
in view of iii) above, we see that this doesn’t cause a problem. 2
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B. The Coalgebraic ring BP∗(BP ∗)

In this appendix we gather some facts on E∗(BP ∗) where E = H or BP . Most of the
material presented here is taken from [19], [27] and [9]. Another good reference on the
subject is [3]. The results of this section hold for the usual (p-local, without completion)
BP -theory.

The first computation of H∗(BP ∗) was done in [25]. It was shown

Theorem B.1 ([25]). H∗(BP i) is a polynomial algebra concentrated in even degrees for
i even, and an exterior algebra generated by odd degree elements for i odd. Furthermore,
dim(QHj(BP i)) = rank(BPj−i).

This is somewhat surpassed by later works that we shall describe. However, for low degree
computations, this dimension formula is quite handy. Besides we used it implicitely in the
proof of Lemma 4.6.

Note that by the space BP i represent the degree i part of the BP -cohomology. Thus the
ring structure of the BP -cohomology is represented by maps

µ+ : BP i ×BP i → BP i

µx : BP i ×BP j → BP i+j

which induce in homology the following maps.

? = H∗(µ+) : H∗(BP i)⊗H∗(BP i) → H∗(BP i)
◦ = H∗(µx) : H∗(BP i)⊗H∗(BP j) → H∗(BP i+j)

Since BP i’s are spaces, they have the diagonal : BP i → BP i ×BP i which makes H∗(BP i)
a coalgebra. Clearly the two products ? and ◦ are maps of coalgebras, and they are related
to each other via the “distributivity law”. More precisely, there is a relation of the form

a ◦ (b ? c) = Σ(a′ ◦ b) ? (a′′ ◦ c) where ∆(a) = Σa′ ⊗ a′′

“up to sign”. That is according to the bidegrees of elements concerned, there are the mul-
tiplication by −1 and/or the conjugation that appear. However we only need to use the
distributivity law for elements in H2∗(BP 2i) ’s so the reader can forget about the signs. All
these make H∗(BP ∗) a ring object in the category of coalgebras, which were called Hopf
rings in [19]. However we follow [6] and call them coalgebraic ring.

The theory of coalgebraic rings have its own interest, especially in connection with that
of coalgebraic modules (c. f. [6]). Here, we are interested in them because thanks to these
products, we can produce lots of elements starting from a few elements, which we are going
to define now. First of all for a ∈ BP ∗ ∼= [S0, BP−∗] we have [a] = a∗(1) ∈ H0(BP−∗).
Note that we have ∆([a]) = [a] ⊗ [a], [a] ? [a′] = [a + a′] and [a] ◦ [a′] = [aa′]. Second, let
x ∈ BP 2(CP∞) be the orientation class, βi ∈ BP2i(CP∞) to be dual to xi. Then we have
bi = x∗(βi) ∈ H2i(BP 2). Note that we have ∆(βi) = Σj+k=i(βj ⊗ βk). So far all elements
we have defined live in even degrees, and to remedy this we define e1 ∈ H1(BP 1) to be
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the image under the suspension map of 1 ∈ H0(BP 0). It turns out that these elements
“generate” H∗(BP ∗) under our two products, that is , every element of H∗(BP ∗) can be
written as a linear combination of ? products of ◦ products of theses elements. However we
don’t have the uniqueness, i.e., there are some relations that we describe now.

Consider the composition CP∞ × CP∞ → CP∞ x→ BP 2. This is just the formal sum
x1 +BP x2 where +BP denotes the universal p-typical formal group law ([17]). Thus in
homology it induces the map

β(x1) +[BP ] β(x2) ∈ Hom(H∗(CP∞ × CP∞), H∗(BP 2))
∼= H∗(BP 2)[[x1, x2]]

where we denote β(X) = ΣβiX
i, and +[BP ] means the formal sum with × and + replaced

with ◦ and ?. However, the map CP∞×CP∞ → CP∞ induces in cohomology the ring map
that sends x to x1 + x2 so we see that the above map is equal to β(x1 + x2). Thus we have

β(x1) +[BP ] β(x2) = β(x1 + x2) (The main relation) .

Then the main result of [19] is

Theorem B.2 ([19], Theorem 4.2). H∗(BP ∗) is the quotient of the free coalgebraic ring
generated by the elements [a]’s for a ∈ BP ∗, bi’s and e1 by the main relation and the relation
e1 ⊗ e1 = b1.

Among other things, this implies that everything comes from a product of S1’s and CP∞’s.
Denote CPS the full subcategory of the homotopy category of spaces whose objects are finite
products of S1’s and CP∞’s, and CPS/BP ∗ the category whose objects are maps from an
object of CPS to BP ∗ and whose morphisms are commutative triangles. Then we have

Theorem B.3 ([9]). The natural map colimCPS/BP ∗H∗(source(−))→ H∗(BP ∗) is an iso-
morphism.

Now, although the main relation gives a complete set of relations in purely algebraic way,
it is not quite practical to work with. Fortunately there are simpler versions. Consider the
maps CP∞ p→ CP∞ x→ BP 2 and the induced maps in homology. Then as in above, we get

b(px) = [p[BP ]](b(x))

where [p[BP ]](X) is the p-series for BP ([pBP ](X) )with the sum and product replaced by
the star and circle products. It turns out that bi’s with i equal to a power of p is necessary
to generate H∗(BP ∗), and if one uses only these b’s instead of all of them, then only the
simplified form of the main relation is necessary ([19]). Now, let’s take a look at these
relations. Modulo ([v1], [v2] · · · [vn] · · · ) ◦ ([p], [v1], [v2] · · · [vn] · · · ) we get

[v1] ◦ b◦p1 + b?p
1 = 0

[v1] ◦ b◦pp + [v2] ◦ b◦p
2

1 + b?p
p = 0

...

[v1] ◦ b◦ppn + [v2] ◦ b◦p
2

pn−1 + · · · [vn] ◦ b◦p
n

1 + b?p
pn = 0

from which we derive
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Lemma B.4 ([2]). We have [vn] ◦ b◦p
n+···+p

1 = (−1)n(b◦1)
?p

As we know that BP∗(BP ∗) is free, the above arguments apply to BP∗(BP ∗) with a
slight modification (especially concerning the main relation). For example, the simplified
form of the main relation becomes

b([pBP ]x) = [p[BP ]](b(x))

and we get

Lemma B.5. In BP∗(BP ∗)/p we have

[v1] ◦ b◦p1 + b?p
1 = v1b1.

Note also that the freeness implies that BP ∗(BP ∗) is just its dual, which should mean that
it is enough to know BP∗(BP ∗) to understand BP ∗(BP ∗) . However, as BP j(BP i)

∼=
[BP i, BP j ], there is a composition BP j(BP i) × BP k(BP j) → BP k(BP i), and there is no
structure in BP∗(BP ∗) which is dual to this. Recent works in [24] suggest a new approach to
deal with this problem, but here we will stick to the traditional approach (c. f. [27]). Given
θ ∈ BP ∗(BP ∗) ∼= [BP ∗, BP ∗], consider θ∗ ∈ HomBP∗(BP∗(BP ∗), BP∗(BP ∗)). Of course
we know the most concretely HomBP∗(BP∗(BP ∗), BP∗). So if denote by θ̂ the element
corresponding to θ in HomBP∗(BP∗(BP ∗), BP∗) what is really interesting to know is the
formula expressing θ∗ in terms of θ̂. Although such a formula exists ([27], [3]) as we don’t
need it in the current version of our paper, we content ourselves to express θ∗ in terms
of θ, and we just consider the induced map in ordinary homology (although the case for
BP -homology is just as simple). This is extremely simple using the colimit model, and we
have

Lemma B.6. Let θ ∈ BP j(BP i)
∼= [BP i, BP j]. In H∗(BP j) we have θ∗(f∗(β)) = (θ(f))∗(β)

where f ∈ BP i(X), β ∈ H∗(X) with X a finite product of S1’s and CP∞’s.

Proof. Juste note that θ(f) = θ ◦ f . 2

The last formula we need is the action of BP ∗(BP ) on BP∗(BP ∗). Again, the colimit
model makes things easy. Let r ∈ BP ∗(BP ) and denote by r′ its right action on BP -
homology. Then we have

Lemma B.7. In BP∗(BP ∗) we have r′(f∗(β)) = f∗(r′(β)) where f ∈ BP i(X), β ∈ BP∗(X)
with X a finite product of S1’s and CP∞’s.

Proof. By the definition of the homology operations f∗ commutes with r′. 2
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