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Abstract. We describe recent results that establish a close relationship between
the Ahlfors mapping function associated to an n-connected domain in the plane and
the Bergman and Szegő kernels of the domain. The results show that the Ahlfors
mapping plays a role in the multiply connected setting very similar to that of the
Riemann mapping in the simply connected case. We also describe how the Ahlfors
map is connected to the Poisson and other kernels.

1. Introduction

The Bergman and Szegő kernel functions associated to a simply connected do-
main Ω in the complex plane are easily expressed in terms of a single Riemann
mapping function associated to the domain. Indeed, if a is a point in Ω and fa(z)
is the Riemann mapping function mapping Ω one-to-one onto the unit disc D1(0)
with fa(a) = 0 and f ′a(a) > 0, then the Szegő kernel S(z, w) is given by

S(z, w) =
c S(z, a)S(w, a)

1− fa(z)fa(w)
,

and the Bergman kernel K(z, w) is given by

K(z, w) =
4πc2S(z, a)2S(w, a)2

(1− fa(z)fa(w))2
,

where c = 1/S(a, a) in both the formulas. The Szegő kernel could be eliminated
from the right hand side of these formulas by noting that f ′a(z) = 2πcS(z, a)2. How-
ever, we shall see that the formulas above have natural generalizations to multiply
connected domains.

These identities reveal that, not only can Riemann maps be computed by means
of kernel functions, but kernel functions can be computed by means of Riemann
maps. In this paper, I shall describe analogous results for n-connected domains
that show that the Bergman and Szegő kernels are simple rational combinations of
an Ahlfors map and n other basic functions of one variable related to the zeroes of
the Ahlfors map.

There are many ways in which the Ahlfors map can be thought of as the “Rie-
mann mapping function for multiply connected domains.” Indeed, the Ahlfors map
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associated to a point a in a multiply connected domain Ω is the unique holomor-
phic function f mapping Ω into the unit disc that makes f ′(a) > 0 and as large as
possible. Furthermore, the Ahlfors map also has mapping properties analogous to
the Riemann map; it maps Ω onto the unit disc and maps each boundary curve of
Ω one-to-one onto the unit circle (see §2 for more details). We shall see that, from
the point of view of kernel functions, the Ahlfors map also takes on the role of a
“Riemann map in multiply connected domains.”

In the last section of this paper, I describe the relationship between the Ahlfors
map and the Poisson kernel, the Garabedian kernel, and the complimentary kernel
to the Bergman kernel.

2. The Ahlfors map and zeroes of the Szegő kernel. We shall study the
kernel functions on a finitely connected domain in the plane such that no boundary
component reduces to a point. Such a domain can be mapped biholomorphically
to a bounded domain Ω with C∞ smooth boundary, i.e., a bounded domain whose
boundary bΩ is given by finitely many non-intersecting C∞ simple closed curves.

In order to continue, we must list some basic facts about the kernel functions.
Suppose that Ω is a bounded n-connected domain in the plane with C∞ smooth
boundary. Let γj , j = 1, . . . , n, denote the n non-intersecting C∞ simple closed
curves which define the boundary of Ω, and suppose that γj is parameterized in
the standard sense by zj(t), 0 ≤ t ≤ 1. Let T (z) be the C∞ function defined on
bΩ such that T (z) is the complex number representing the unit tangent vector at
z ∈ bΩ pointing in the direction of the standard orientation. This complex unit
tangent vector function is characterized by the equation T (zj(t)) = z′j(t)/|z′j(t)|.

We shall let A∞(Ω) denote the space of holomorphic functions on Ω that are in
C∞(Ω). The space of complex valued functions on bΩ that are square integrable
with respect to arc length measure ds will be denoted by L2(bΩ). We shall let
H2(bΩ) denote the space of functions in L2(bΩ) that represent the L2 boundary
values of holomorphic functions on Ω (as described in [1]) and we shall call H2(bΩ)
the Hardy space. The inner product associated to L2(bΩ) shall be written

〈u, v〉bΩ =

∫
bΩ

u v̄ ds.

For each fixed point a ∈ Ω, the Szegő kernel S(z, a), as a function of z, extends to
the boundary to be a function in A∞(Ω). Furthermore, S(z, a) has exactly (n− 1)
zeroes as a function of z in Ω (counting multiplicities) and does not vanish at any
points z in the boundary of Ω. Furthermore, S(z, w) is in C∞((Ω× Ω)− {(z, z) :
z ∈ bΩ}) as a function of (z, w).

The Garabedian kernel L(z, a) is a kernel related to the Szegő kernel via the
identity

(2.1)
1

i
L(z, a)T (z) = S(a, z) for z ∈ bΩ and a ∈ Ω.

For fixed a ∈ Ω, the kernel L(z, a) is a holomorphic function of z on Ω− {a} with
a simple pole at a with residue 1/(2π). Furthermore, as a function of z, L(z, a)
extends to the boundary and is in the space C∞(Ω−{a}). In fact, L(z, a) extends
to be in C∞((Ω× Ω) − {(z, z) : z ∈ Ω}). Also, L(z, a) is non-zero for all (z, a) in
Ω× Ω with z 6= a.



The kernel S(z, w) is holomorphic in z and antiholomorphic in w on Ω × Ω,
and L(z, w) is holomorphic in both variables for z, w ∈ Ω, z 6= w. We note here

that S(z, z) is real and positive for each z ∈ Ω, and that S(z, w) = S(w, z) and
L(z, w) = −L(w, z). Also, the Szegő kernel reproduces holomorphic functions in
the sense that

h(a) = 〈h, S(·, a)〉bΩ
for all h ∈ H2(bΩ) and a ∈ Ω.

Given a point a ∈ Ω, the Ahlfors map fa associated to the pair (Ω, a) is a proper
holomorphic mapping of Ω onto the unit disc. It is an n-to-one mapping (counting
multiplicities), it extends to be in A∞(Ω), and it maps each boundary curve γj one-
to-one onto the unit circle. Furthermore, fa(a) = 0, and fa is the unique function
mapping Ω into the unit disc maximizing the quantity |f ′a(a)| with f ′a(a) > 0. The
Ahlfors map is related to the Szegő kernel and Garabedian kernel via

(2.2) fa(z) =
S(z, a)

L(z, a)
.

Note that f ′a(a) = 2πS(a, a) 6= 0. Because fa is n-to-one, fa has n zeroes. The
simple pole of L(z, a) at a accounts for the simple zero of fa at a. The other n− 1
zeroes of fa are given by (n− 1) zeroes of S(z, a) in Ω. Let a1, a2, . . . , an−1 denote
these n−1 zeroes (counted with multiplicity). I proved in [2] (see also [1, page 105])
that, if a is close to one of the boundary curves, the zeroes a1, . . . , an−1 become
distinct simple zeroes. It follows from this result that, for all but at most finitely
many points a ∈ Ω, S(z, a) has n− 1 distinct simple zeroes in Ω as a function of z.

3. Nearly orthogonal power series on multiply connected domains. The
Ahlfors function gives rise to a particularly nice basis for the Hardy space of an
n-connected domain with C∞ smooth boundary. We shall use the notation that we
set up in the preceding section. We assume that a ∈ Ω is a fixed point in Ω that
has been chosen so that the n − 1 zeroes, a1, . . . , an−1, of S(z, a) are distinct and
simple. We shall let a0 denote a and we shall use the shorthand notation f(z) for
the Ahlfors map fa(z).

It was proved in [2] that the set of functions

hik(z) = S(z, ai)f(z)k,

where 0 ≤ i ≤ n− 1 and k ≥ 0, forms a basis for the Hardy space H2(bΩ) and that

(3.1) 〈hik, hjm〉bΩ =

{
0, if k 6= m,

S(aj, ai), if k = m.

I shall prove this result here in order to demonstrate an interesting connection
between the Ahlfors map and “power series” on multiply connected domains. First,
I will show that the set of functions above spans a dense subset of H2(bΩ). Indeed,
suppose that g ∈ H2(bΩ) is orthogonal to the span. Notice that the reproducing
property of the Szegő kernel yields that

〈g, S(·, aj)〉bΩ = g(aj),

and therefore g vanishes at a0, a1, . . . , an−1. Suppose we have shown that g vanishes
to order m at each aj, j = 0, 1, . . . , n − 1. It follows that g/fm has removable



singularities at each aj and so it can be viewed as an element of H2(bΩ). The value

of g/fm at aj is 1
m!g

(m)(aj)/f
′(aj)

m. Since |f(z)| = 1 when z ∈ bΩ, it follows that

1/f(z) = f(z) when z ∈ bΩ, and we may write

〈g, S(·, aj)fm〉bΩ = 〈g/fm, S(·, aj)〉bΩ =
1

m!
g(m)(aj)/f

′(aj)
m.

(The last equality follows from the reproducing property of the Szegő kernel.) We
conclude that g vanishes to order m + 1 at each aj. By induction, g vanishes to
infinite order at each aj and hence, g ≡ 0. This proves the density.

To prove (3.1), let us suppose first that k > m. The fact that f = 1/f on bΩ
and the reproducing property of the Szegő kernel now yield that

〈hik, hjm〉bΩ =

∫
z∈bΩ

S(z, ai)f(z)k−m S(z, aj) ds =∫
z∈bΩ

S(aj , z)
[
S(z, ai)f(z)k−m

]
ds = S(aj, ai)f(aj)

k−m.

The identity now follows because f(aj) = 0 for all j. If k = m, then

〈hik, hjm〉bΩ =

∫
z∈bΩ

S(aj, z) S(z, ai) ds = S(aj, ai),

and identity (3.1) is proved. It is now easy to see that the functions hik are linearly
independent. Indeed, identity (3.1) reveals that we need only check that, for fixed
k, the n functions hik, i = 0, 1, . . . , n− 1, are linearly independent, and this is true
because a relation of the form

n−1∑
i=0

CiS(z, ai) ≡ 0

implies, via the reproducing property of the Szegő kernel, that every function g in
the Hardy space satisfies

n−1∑
i=0

Ci g(ai) = 0,

and it is easy to construct polynomials g that violate such a condition.
To obtain a formula for the Szegő kernel on Ω, we next orthonormalize the

sequence {hik} via the Gram-Schmidt procedure. Identity (3.1) shows that the
functions in the sequence are orthogonal for different values of k, and so our task
is merely to orthonormalize the n functions hik, i = 0, 1, . . . , n− 1 for each k. We
obtain an orthonormal set {Hik} given by

H0k(z) = b00S(z, a)f(z)k and,

Hik(z) =
i∑

j=1

bijS(z, aj)f(z)k, i = 1, . . . , n− 1,



where bii 6= 0 for each i = 0, 1, . . . , n − 1. Because |f | = 1 on bΩ, it follows that
the coefficients bij do not depend on k. Notice that Hik does not contain a term
involving S(z, a) if i > 0 because of (3.1) and the fact that S(ai, a) = 0.

The Szegő kernel can be written in terms of our orthonormal basis as

S(z, w) =
n−1∑
i=0

∞∑
k=0

Hik(z)Hik(w).

The geometric sum
∞∑
k=0

f(z)k f(w)k =
1

1− f(z)f(w)

can be factored from the expression for S(z, w) to yield the formula,

(3.2) S(z, w) =
1

1− f(z)f(w)

c0S(z, a)S(w, a) +
n−1∑
i,j=1

cijS(z, ai)S(w, aj)

 .

We shall now determine the coefficients in this formula. At the moment, we only
know that these coefficients exist and that they are given as combinations of the
Gram-Schmidt coefficients found above. That c0 = 1/S(a, a) can be seen by setting
z = a and w = a in (3.2). To determine the coefficients cij , suppose 1 ≤ k ≤ n− 1
and set w = ak in (3.2). Note that f(ak) = 0 and that S(a, ak) = 0. Hence,

S(z, ak) =
n−1∑
i=1

n−1∑
j=1

cijS(aj , ak)

S(z, ai).

Such a relation can only be true if

n−1∑
j=1

cijS(aj, ak) =

{
1, if i = k,

0, if i 6= k.

This shows that the (n− 1)× (n− 1) matrix [S(aj, ak)] is invertible and that [cij ]
is its inverse. Let us summarize these results in the following theorem.

Theorem 3.1. The Szegő kernel of an n-connected domain is related to the Ahlfors
map fa(z) associated to a point a in the domain via the formula

S(z, w) =
1

1− fa(z)fa(w)

c0S(z, a)S(w, a) +
n−1∑
i,j=1

cijS(z, ai)S(w, aj)


where c0 = 1/S(a, a) and the coefficients cij are given as the coefficients of the
inverse matrix to the matrix [S(aj, ak)].

Theorem 3.1 generalizes in a routine manner to any finitely connected domain Ω1

such that no boundary component is a point. Such a domain can be mapped to a
finitely connected domain with smooth boundary Ω2 via a biholomorphic mapping



Φ. The function Φ′ has a single valued holomorphic square root on Ω1 (see [1, page
43]) and if we define the Szegő kernel on Ω1 via the natural transformation formula

(3.3) S1(z, w) =
√

Φ′(z)S2(Φ(z),Φ(w))
√

Φ′(w),

then it is easy to see that the terms in (3.2) transform in exactly the correct manner
in which to make (3.2) valid on Ω1.

We mention that the nearly orthogonal basis hik(z) = S(z, ai)f(z)k defined
above can be used to expand a holomorphic function on Ω in a special power series
expansion. Indeed, given a homorphic function G(z) in H2(bΩ), we may write

G(z) =
n−1∑
i=0

∞∑
k=0

bikS(z, ai)f(z)k =
n−1∑
i=0

S(z, ai)
∞∑
k=0

bikf(z)k.

The coefficients bij may be computed by means of the inner product on bΩ, or they
may also be computed by inductively equating coefficients of Taylor expansions at
each of the points ai, i = 0, . . . , n− 1. The expansion for G can also be written in
the form

G(z) =
n−1∑
i=0

S(z, ai)Hi(f(z))

where the Hi are holomorphic on the unit disc. The n linear operators given by
the mappings that take G to Hi have yet to be studied.

4. Complexity of the kernel functions. Formula (3.2) reveals that the Szegő
kernel associated to an n-connected domain is composed of the n + 1 functions,
S(z, a), S(z, a1), S(z, a2), . . . , S(z, an−1), and fa(z). (Note that because fa(z) =
S(z, a)/L(z, a), we may replace fa(z) in this list of functions by L(z, a) if we like.)
We shall now see that the Bergman kernel of an n-connected domain in the plane
is composed of the same basic functions that comprise the Szegő kernel.

The Bergman kernel K(z, w) is related to the Szegő kernel via the identity

K(z, w) = 4πS(z, w)2 +
n−1∑
i,j=1

AijF
′
i (z)F

′
j(w),

where the functions F ′i (z) are classical functions of potential theory described as
follows. The harmonic function ωj which solves the Dirichlet problem on Ω with
boundary data equal to one on the boundary curve γj and zero on γk if k 6= j
has a multivalued harmonic conjugate. The function F ′j(z) is a globally defined
single valued holomorphic function on Ω which is locally defined as the derivative
of ωj + iv where v is a local harmonic conjugate for ωj . The Cauchy-Riemann
equations reveal that F ′j(z) = 2(∂ωj/∂z).

Let F ′ denote the vector space of functions given by the complex linear span of
the set of functions {F ′j(z) : j = 1, . . . , n− 1}. It is a classical fact that F ′ is n− 1
dimensional. Notice that S(z, ai)L(z, a) is in A∞(Ω) because the pole of L(z, a) at
z = a is cancelled by the zero of S(z, ai) at z = a. A theorem due to Schiffer (see
[5,1,2]) states that the n− 1 functions S(z, ai)L(z, a), i = 1, . . . , n− 1 form a basis
for F ′. We may now write

(4.1) K(z, w) = 4πS(z, w)2 +
n−1∑
i,j=1

λijS(z, ai)L(z, a)S(w, aj)L(w, a),



which, together with (3.2) allows us to see that the Bergman kernel is composed of
exactly the same basic functions that make up the Szegő kernel.

A recipe is given for explicitly computing all the elements appearing in formula
(4.1) in [4]. It is interesting that all the elements of the kernel function can be
computed by means of one dimensional line integrals and simple linear algebra.

We have proved formula (4.1) on a domain with smooth boundary. If a finitely
connected domain Ω1 does not have smooth boundary, and if none of its boundary
components are points, there is a conformal mapping Φ of Ω1 onto a domain Ω2

whose boundary is smooth. The transformation formula for the Bergman kernels
under biholomorphic mappings,

K1(z, w) = Φ′(z)K2(Φ(z),Φ(w))Φ′(w),

together with the transformation formula for the Szegő kernels (3.3), can then be
used to show that (4.1) is valid on Ω1.

5. The Ahlfors map and other kernel functions. I showed in [3] (see also [1])
how the Szegő projection can be used to solve the Dirichlet problem. The method
gives rise to a formula for the Poisson kernel of a bounded n-connected domain
Ω with C∞ smooth boundary in terms of the Szegő kernel (see [2]). The Poisson
kernel p(z, w) is given by

p(a, w) =
|S(w, a)|2
S(a, a)

+
n−1∑
j=1

(ωj(a)− λj(a))µj(w)

where ωj are the harmonic measure functions defined in §3, µj(w) is a real valued
function that is a linear combination of S(ak, w)S(w, a), k = 1, . . . , n− 1, and

λj(a) =

∫
ζ∈γj

|S(ζ, a)|2
S(a, a)

ds

is a function in C∞(Ω) that has the same boundary values as ωj(a), i.e., equal to
one on γj and equal to zero on the other boundary components. The Ahlfors map is
the principal ingredient of the main term, |S(w, a)|2/S(a, a) in the Poisson kernel;

the other term,
∑n−1
j=1 (ωj(a)− λj(a))µj(w), is in C∞(Ω× Ω).

The Garabedian kernel can also be expressed in terms of the Ahlfors map. Let
z ∈ Ω and w ∈ bΩ and use identity (2.1) and the fact that fa = 1/fa on bΩ to
rewrite formula (3.2) in the form

L(z, w) =
fa(w)

fa(z)− fa(w)

c0S(z, a)L(w, a) +
n−1∑
i,j=1

c̄ijS(z, ai)L(w, aj)

 .

Since both sides of this identity are holomorphic in z and w, this identity holds for
z, w ∈ Ω, z 6= w. Note that the constants c0 and cij are the same as the constants
in (3.2).

The complimentary kernel Λ(z, w) to the Bergman kernel (see [1,page 134]), may
also be expressed in terms of the Ahlfors map via

Λ(w, z) = 4πL(w, z)2 +
n−1∑
i,j=1

λijL(w, ai)S(w, a)S(z, aj)L(z, a),



z, w ∈ Ω, z 6= w.
Finally, we mention that the gradient of the Green’s function on a finitely con-

nected domain Ω with C∞ smooth boundary is composed of finitely many functions
of one variable in C∞(Ω). It is shown in [2] that

∂G

∂w̄
(z, w) = π

S(z, w)L(w, z)

S(z, z)
− i

n−1∑
j=1

(ωj(z)− λj(z))gj(w)


for all z, w ∈ Ω, z 6= w, where gj(w) is a linear combination of the holomorphic
functions S(w, ak)L(w, a), k = 1, . . . , n− 1.
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3. , The Szegő projection and the classical objects of potential theory in the plane, Duke
Math. J. 64 (1991), 1–26.

4. , Recipes for classical kernel functions associated to a multiply connected domain in
the plane, Complex Variables, Theory and Applications 29 (1996), 367–378.

5. M. Schiffer, Various types of orthogonalization, Duke Math. J. 17 (1950), 329–366.

Mathematics Department, Purdue University, West Lafayette, IN 47907 USA

E-mail address: bell@math.purdue.edu


