MATH 425, Exam I

(10) 1. Find all complex numbers z such that

a)
$$z^3 = 1 + i$$

b)
$$e^z = i$$

- (20) **2.** Suppose that v_1 and v_2 are both harmonic conjugates for the same harmonic function u on a domain Ω . Show that v_1 and v_2 must differ by a constant on Ω . Hint: Cauchy-Riemann equations
- (20) **3.** Compute the following complex integrals where γ is the curve parameterized by $z(t)=2e^{it},\ 0\leq t\leq \frac{3\pi}{2}.$

a)
$$\int_{\gamma} \bar{z} dz$$

b)
$$\int_{\gamma} \frac{1}{z} dz$$

(10) **4.** Suppose f(z) is an entire function. Show that if Re f(z) < 0 for all z, then f must be a constant function.

Hint: Consider the modulus of $e^{f(z)}$.

(20) **5.** Compute

$$\int_{\gamma} \frac{e^{iz}}{z^2 + 1} \ dz$$

where

- a) γ is the counterclockwise circle of radius two about the origin. Hint: Use $z^2 + 1 = (z - i)(z + i)$ and partial fractions.
- b) γ is the counterclockwise circle of radius one about i.
- c) γ is the counterclockwise circle of radius one-half about the origin.
- (20) **6.** Suppose f(z) is an entire function such that there are positive constants c and R such that

$$|f(z)| < c|z|^N$$

for all z with R < |z|. Show that f must be a polynomial of degree N or less.

Hint: Use the Cauchy Estimates on big discs $D_r(a)$ to estimate $f^{(N+1)}(a)$.