Math 530

Homework 5

- 1. Prove that there is no analytic function f on the unit disk such that $f(1/n) = (-1)^n/n$ for n = 2, 3, 4, ...
- **2.** If f(z) is analytic on a domain Ω , show that $\overline{f(\bar{z})}$ is analytic on $\{z:\bar{z}\in\Omega\}$.
- **3.** Suppose that Ω is a domain in \mathbb{C} that is symmetric with respect to the real axis. If f(z) is an analytic function on Ω that is real-valued on a non-empty open interval of the real line contained in $\Omega \cap \mathbb{R}$, prove that $f(\bar{z}) = \overline{f(z)}$ for all z in Ω .
- **4.** Suppose that F is a *one-to-one* analytic mapping of a domain Ω *onto* the unit disc such that F(a) = 0. Prove that if g is any analytic function on Ω which maps Ω into the unit disc such that g(a) = 0, then $|g'(a)| \leq |F'(a)|$. If |g'(a)| = |F'(a)|, does it follow that $g \equiv F$? (You will need to use the fact that if $F: \Omega_1 \to \Omega_2$ is a one-to-one analytic mapping of a domain Ω_1 onto a domain Ω_2 , then the inverse mapping F^{-1} is analytic on Ω_2 .)
- **5.** Suppose that F is a *one-to-one* analytic mapping of the unit disc *onto* a domain Ω . Show that if g is any other analytic map of the unit disc into Ω such that g(0) = F(0), then $g(D_r(0)) \subset F(D_r(0))$ for all 0 < r < 1.
- **6.** Suppose that F is a *one-to-one* analytic mapping of the unit disc onto a square with center at the origin. Prove that, if F(0) = 0, then F(iz) = iF(z) for all z.
- 7. Suppose that f is an analytic function on a domain Ω such that for each point $a \in \Omega$, there is some coefficient c_n which is zero in the power series expansion $f(z) = \sum_{k=0}^{\infty} c_k(z-a)^k$ at a. Prove that f must be a polynomial. (Note that n may depend on a.) Hint: Let \mathcal{O}_n denote the set consisting of points $z \in \Omega$ such that $f^{(n)}(z) = 0$. Notice that $\Omega = \bigcup_{n=0}^{\infty} \mathcal{O}_n$.
- 8. Prove that if G_1 and G_2 are two analytic functions on a domain Ω such that $e^{G_1} \equiv e^{G_2}$ on Ω , then they differ by an integer multiple of $2\pi i$. What can you say about two analytic functions with the same N-th power?
- **9.** Prove that the ring of analytic functions on a domain is an integral domain.