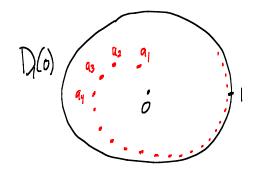
Review lecture 1

Final Exam Wed., May 1, 8:00-10:00 am in LAWSN B151

M-L on simply connected = Weierstraß Thm about zeroes on simply connected domains by proof I gave $\Omega = \mathbb{C}$.

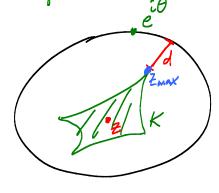
(Weierstraß Thm about zeroes true on any domain in C)



an spiraling out to 121=1, limit points dense in C₁(0). Get for f with zeroes at ans. Connot be extended analyticly to any bigger open set. Domains in C are "domains of holomorphy".

4. (30 pts.) Suppose that $f_n(z)$ is a sequence of functions that are continuous on $\overline{D_1(0)}$, analytic on $D_1(0)$, and such that $\int_0^{2\pi} |f_n(e^{i\theta})| d\theta < 1$ for all n. Prove that there is a subsequence that converges uniformly on compact subsets of $D_1(0)$.

Montel's Thin! Need to show {fin}, is uniformly bodd on compact subsets of D(o).



$$|f(z)| = \frac{1}{2\pi i} \int \frac{f_n(\omega)}{\omega - z} dz$$

$$= \frac{1}{2\pi i} \int_{-2\pi i}^{2\pi i} \int f_n(e^{i\theta}) \frac{1}{e^{i\theta} - z} i e^{i\theta} d\theta$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} \left| f_{n}(e^{i\theta}) \right| \frac{1}{d} d\theta$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} \left| f_{n}(e^{i\theta}) \right| \frac{1}{d} d\theta$$

$$= \frac{1}{2} \int_{0}^{2\pi} \left| f$$

5. (40 pts.) Suppose a_1, a_2, \ldots, a_N are distinct non-zero complex numbers and let Ω denote the domain obtained from $\mathbb C$ by removing each of the closed line segments joining a_k to the origin, k = 1, ..., N. Prove that there is an analytic function fon Ω such that

of such that
$$f(z)^{N} = \prod_{k=1}^{N} (z - a_{k}).$$

$$q_{N}$$

$$q_{N}$$

$$f(z) = \exp\left(\frac{1}{N} \int_{F(w)}^{F(w)} dw\right)$$

$$f(z) = \exp\left$$

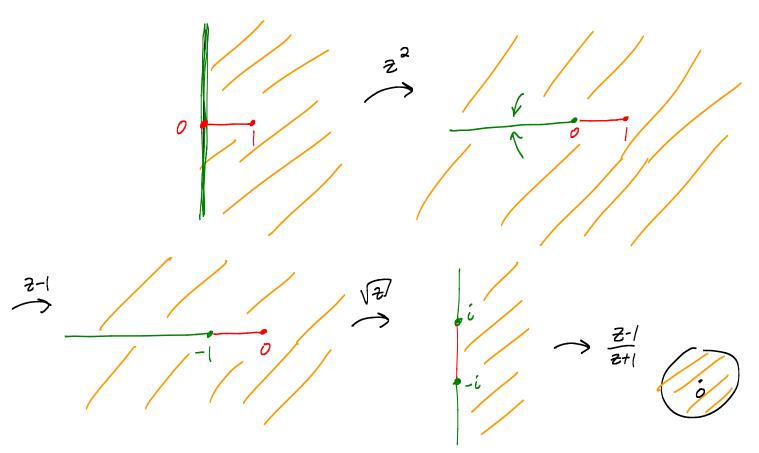
Next:
$$f' = \exp\left(\frac{1}{2} \int_{\mathbb{R}^2} F' d\omega\right) \cdot \frac{1}{2} F'$$

Next:
$$f' = \exp(\sqrt{N} \int_{Y^2}^{Y^2} F dw) \cdot \sqrt{N} F$$
 So $f' = \sqrt{F}$

Last step: $\left(\frac{f^N}{F}\right)' = 0$ because of

So
$$f^N = cF$$
, Correct $f_{cor} = \frac{1}{\sqrt{c'}} f$.

3. (30 pts.) Find a one-to-one conformal mapping from the region $\{z : \text{Re } z > 0\} - (0,1]$ onto the unit disc.



6. (40 pts.) Suppose that f(z) is an analytic functions with a zero of order N at z_0 . Prove that there exist $\epsilon > 0$ and $\delta > 0$ such that, for every $w \in \mathbb{C}$ with $0 < |w| < \epsilon$, the equation f(z) = w has exactly N distinct roots in $D_{\delta}(z_0)$.

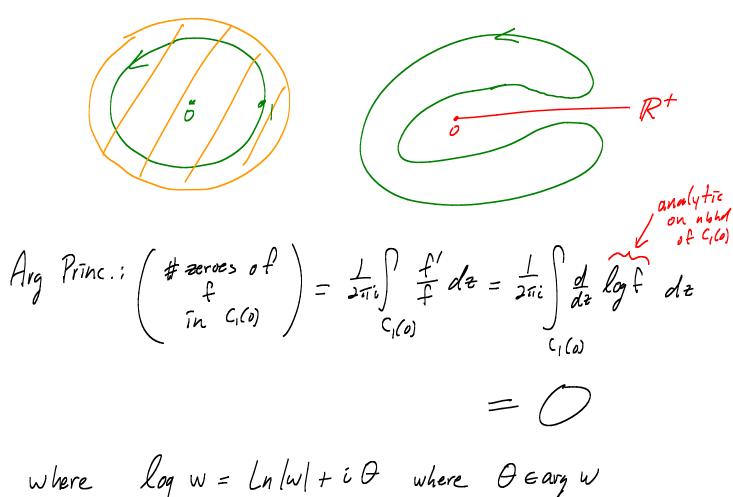
Hint: Rouché's Theorem.

f has a zero of order N z_0 in z_0 in z_0 z_0

Step 1: Shrink S so that z_0 is the only zero of f in $D_{\sigma}(z_0)$ Step 2: Think Rouché: f=f, g=f-W

Aha! I has a zero of order N-1 at zo. Shrink & some more so zo is only zero of I'in Dr too. N zeroes, all simple => distinct!

2. (30 pts.) Suppose that f is analytic in a neighborhood of the closed unit disc and that f(z) is never in the set $\{x \in \mathbb{R} : x \geq 0\}$ when |z| = 1. Show that f has no zeroes in the unit disc.



 $\log w = \ln |w| + i \theta$ where $\theta \in \arg w$ with $0 < \theta < 2\pi$

6. (30 pts.) Suppose that $a_1 = -1$, $a_2 = 1$, and $a_3 = 2i$ and that f is a function that f is analytic on $\mathbb{C} - \{a_1, a_2, a_3\}$ that has essential singularities at the three points. Suppose also that

$$\int_{C_1(a_n)} f \, dz = \sqrt{n} \quad \text{for } n = 1, 2, 3,$$

where $C_1(z_0)$ denotes the circle of radius 1 about z_0 parametrized in the counter clockwise sense. Draw a closed curve γ such that

$$\operatorname{Ind}_{\gamma} a_1 = -1, \quad \operatorname{Ind}_{\gamma} a_2 = 1, \quad \text{and} \quad \operatorname{Ind}_{\gamma} a_3 = 2.$$

Explain how to define a cycle Γ so that the General Cauchy Theorem on the domain $\Omega = \mathbb{C} - \{a_1, a_2, a_3\}$ can be used to compute

$$\int_{\gamma} f \, dz.$$

Find the value of the integral and explain your reasoning. (You are not allowed to use the General Residue Theorem here. If you failed to draw such a γ , you may assume that such a γ exists.)