Math 530

Homework 7

- 1. Find a one-to-one conformal mapping of the region common to the two disks $|z-1| < \sqrt{2}$ and $|z+1| < \sqrt{2}$ onto the unit disk.
- 2. Find a one-to-one conformal mapping of the region $\{z:0<\text{Re }z<1\}$ onto the unit disk. Use the inverse of this map to show that there exists a bounded harmonic function on the unit disk whose harmonic conjugates are unbounded on the unit disk. (Remark: A similar idea can be used to show that there is a harmonic function which extends continuously to the closed disk that does not have a bounded harmonic conjugate on the disk.)
- 3. Let Ω denote the open set obtained by removing the interval [-1,1] from \mathbb{C} . Prove that there is an analytic function F(z) on Ω such that $F(z)^2 = \frac{z+1}{z-1}$. Hint: What is the image of Ω under the map (z+1)/(z-1)?
- **4.** Assume that f(z) is analytic and satisfies the inequality |f(z)-1|<1 in a domain Ω . Prove that

$$\int_{\gamma} \frac{f'(z)}{f(z)} \ dz = 0$$

for every closed curve in Ω . How many zeroes can f have in Ω ?

- 5. Suppose that f_n is a sequence of analytic functions on a domain Ω which converges uniformly on compact subsets of Ω to a non-constant function f. Suppose that f has a zero of order m at a point a in Ω . Prove that there is an $\epsilon > 0$ and a positive integer N such that each function $f_n(z)$ with n > N has exactly m zeroes (counted with multiplicity) on $D_{\epsilon}(a) \subset \Omega$.
- 6. Suppose that f_n is a sequence of analytic functions on a domain Ω which converges uniformly on compact subsets of Ω to a function f. Suppose that $\widetilde{\Omega}$ is a domain containing $f_n(\Omega)$ for each n. Prove that, if f is not constant, then $\widetilde{\Omega}$ contains $f(\Omega)$ too.
- 7. Suppose that f(z) has an isolated singularity at a and that there are real constants C and λ with C>0 and $0<\lambda<1$ such that

$$|f(z)| \le \frac{C}{|z-a|^{\lambda}}$$

for z in a punctured disc about a. Prove that the singularity at a is removable.