The Green's Function and Bergman Kernel of an n-Connected Domain

Raymond L. Polak

We will establish the identity relating the Bergman kernel K(z, w) and Green's function G(z, w) of an *n*-connected domain Ω with C^{∞} boundary:

$$K(z,w) = -\frac{2}{\pi} \frac{\partial^2 G(z,w)}{\partial z \partial \overline{w}}.$$
 (1)

We first recall that the Green's function for such a domain Ω is given by

$$G(z, w) = -\log|z - w| + \psi(z, w),$$
 (2)

where for each $w \in \Omega$ the function $\psi(z, w)$ satisfies

$$\Delta_z \psi(z, w) = 0, \quad \forall \ z \in \Omega,$$

$$\psi(z, w) = \log|z - w|, \quad \forall \ z \in \partial\Omega.$$

Equation (1) is established in [1] as Theorem 31.3 on page 180. Our proof here will make use of the following:

Theorem 1. Let Ω be a bounded domain in \mathbb{C} such that $\partial\Omega$ consists of n disjoint C^{∞} Jordan curves. Let $w \in \Omega$ and let $\varphi(\cdot, w)$ be the solution to the following Dirichlet problem:

$$\Delta_z \varphi(z, w) = 0 \quad \forall \ z \in \Omega,$$

$$\varphi(z, w) = \frac{1}{z - w}, \quad \forall \ z \in \partial \Omega.$$

Then the Bergman kernel K(z, w) for Ω is given by

$$K(z, w) = \frac{1}{\pi} \frac{\partial \overline{\varphi}(z, w)}{\partial z}.$$

Theorem 1 is established in [1] as Theorem 25.4 on page 138. The main idea is to use the complex Green's identity for integrals and the density of $A^{\infty}(\Omega)$ in the Bergman space $H^2(\Omega)$. Similar ideas are used in Theorem 31.3 to prove equation (1), but the argument is a bit more tricky. The motivation for our proof of equation (1) is to avoid the tricky argument by realizing that Theorem 1 contains most of what we need.

The remainder of what we need is that the functions G(z, w) and $\psi(z, w)$ are C^{∞} functions of both variables z, w wherever they are defined. Assuming this, we prove our theorem.

Theorem 2. Let Ω be a bounded domain in \mathbb{C} such that $\partial\Omega$ consists of n disjoint C^{∞} Jordan curves. The Bergman kernel K(z,w) and the Green's function G(z,w) satisfy

$$K(z, w) = -\frac{2}{\pi} \frac{\partial^2 G(z, w)}{\partial z \partial \overline{w}}.$$

Proof. We compute the \overline{w} derivative of equation (2) to obtain

$$\frac{\partial G(z,w)}{\partial \overline{w}} = -\frac{1}{2(\overline{w} - \overline{z})} + \frac{\partial \psi(z,w)}{\partial \overline{w}}.$$
 (3)

Differentiating with respect to the z variable now gives

$$\frac{\partial^2 G(z, w)}{\partial z \partial \overline{w}} = \frac{\partial^2 \psi(z, w)}{\partial z \partial \overline{w}}.$$
 (4)

Our assumption on the differentiability of ψ implies that

$$\Delta_{z} \left(\frac{\partial \psi(z, w)}{\partial \overline{w}} \right) = 4 \frac{\partial^{2}}{\partial \overline{z} \partial z} \left(\frac{\partial \psi(z, w)}{\partial \overline{w}} \right)$$
$$= 4 \frac{\partial}{\partial \overline{w}} \left(\frac{\partial^{2}}{\partial \overline{z} \partial z} \psi(z, w) \right) = \frac{\partial}{\partial \overline{w}} \left(\Delta_{z} \psi(z, w) \right) = 0, \quad \forall \ z \in \Omega.$$

Furthermore, equation (1) implies that for each $w \in \Omega$ we have G(z, w) = 0 for all $z \in \partial \Omega$. Hence, for each $w \in \Omega$ it follows that $\frac{\partial G(z, w)}{\partial \overline{w}} = 0$ for all $z \in \partial \Omega$. Equation 3 now implies that

$$\frac{\partial \psi(z,w)}{\partial \overline{w}} = \frac{1}{2(\overline{w} - \overline{z})} = -\frac{1}{2(\overline{z} - \overline{w})}, \quad \forall \ z \in \partial \Omega.$$

Now, the function $\varphi(z,w) = -2\overline{\left(\frac{\partial \psi(z,w)}{\partial \overline{w}}\right)}$ satisfies

$$\Delta_z \varphi(z, w) = 0 \quad \forall \ z \in \Omega,$$

$$\varphi(z, w) = \frac{1}{z - w}, \quad \forall \ z \in \partial \Omega.$$

Therefore, by Theorem 1 and equation (4) we obtain

$$K(z,w) = \frac{1}{\pi} \frac{\partial \overline{\varphi}(z,w)}{\partial z} = -\frac{2}{\pi} \frac{\partial^2 \psi(z,w)}{\partial z \partial \overline{w}} = -\frac{2}{\pi} \frac{\partial^2 G(z,w)}{\partial z \partial \overline{w}}.$$

References

[1] Bell, S. R. The Cauchy Transform, Potential Theory, and Conformal Mapping, 2^{nd} ed. CRC Press, 2016.